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ABSTRACT

This paper estimates multi-factor versions of the Vasicek (1977) 
and the Cox, Ingersoll and Ross (CIR 1985) models of the term structure 
of interest rates using zero-coupon Government of Jamaica bond prices. 
Statistical tests conrm that the two-factor CIR-model best accounts for 
the dynamics of the term structure. The empirical analysis reveal that 
the level of the short rate exhibits strong and smooth mean reversion and 
the existence of a large and signicant risk premium that increases with 
time to maturity. Based on estimated factor loadings, the unobserved 
short rate has a signicant impact on the short end of the yield curve but 
a relatively minimal impact on the long end.
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1.0  Introduction

The econometric estimation of the term structure of interest rates 
has received tremendous attention from nancial and macro-economists, 
particularly in the context of bond pricing.1 Based on the Expectations 
Theory of the term structure, the yields on long-term bonds are the 
expected value of risk-adjusted average future short-term yields. Hence, 
measurement of the term structure of interest rates allows for the 
extraction of information on investors’ expectations about future interest 
rates. Term structure measurement models have a range of applications. 
Specically, interpreting the empirical properties of bond yield dynamics 
that are provided by term structure measurement models is important for 
a number of purposes that include:

•     Inuencing aggregate demand through monetary policy.2 

The short rate is the fundamental policy instrument of 
the central bank, that is, central banks may shift the short 
end of the yield curve when adjusting their policy stance. 
However, movement in long-term rates has a greater 
inuence on aggregate demand. Thus, knowledge of yield 
curve  dynamics provides information to the central bank 
on how their interest rate decisions will impact the future 
path of the economy.

•     Risk management through the pricing and hedging of 
interest rate-contingent claims including caps, floors 
and swaptions.3 Further, value-at-risk estimates for xed 

1      See, for example, Babbs and Nowman (1999), Dai and Singleton (2000) 
and Pearson and Sun (1994).

2      See, for example, Ang and Piazzesi (2003), Diebold, Redebusch and Aruoba 
(2003), Fendel (2004), Hördahl, Tristani and Vestin (2002), Piazzesi (2003) 
and Rudebusch and Wu (2003).

3      See, for example, Amin and Morton (1994), Buhler et. al. (1999), Driessen, 
Klaasen and Melenberg (2002), Canabarro (1995), Chernov and Ghysels 
(2000), Jagannathan et. al., (2000) and Longstaff et. al., (2001).



income portfolios can be obtained through simulating 
paths for the term structure.4

•     Public debt management through bond issues.5  Knowledge 
of the dynamic properties of the yield curve provides 
information on the impact of scal policy on investor risk 
preferences and future yield expectations of bonds across 
maturities. Fiscal authorities can use this information 
when deciding the length of tenors in their financing 
decisions.

There has been enormous growth since the 1990s in the sovereign 
bond markets for emerging economies, including Jamaica. This has led 
to the increased importance of obtaining information concerning the 
term structure of emerging countries’ sovereign bond yields in order to 
predict the timing of possible adverse credit events in these economies. 
Whereas a number of studies exist that examine the term structure 
of specic emerging market sovereign bond yields, no known study exists 
for the Jamaican case. This paper estimates the two most popular versions 
of afne diffusion term structure models using zero-coupon Government 
of Jamaica (GOJ) sovereign bonds for the period 24 September 2004 to 
28 July 2006. Specically, multi-factor versions of the Vasicek (1977) 
and the Cox, Ingersoll and Ross (CIR 1985) models of the nominal 
interest rate term structure are estimated using a state-space approach. 
This approach simultaneously integrates time series and cross-sectional 
GOJ sovereign yields to generate the unobservable state variables using 
a Kalman lter. The objective of  Section 1 then, is to examine the 
usefulness of popular term structure models in explaining the yield 
curve dynamics in Jamaica in order to derive information on investor 
expectations as well as to accurately price GOJ bonds and hedging 
instruments.

4      Value-at-Risk is dened as the maximum potential loss on a portfolio for a 
given horizon and probability.

5      See, for example, Dai and Philippon (2004).
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The next section focuses on the theoretical formulation of the 
Vasicek and CIR multi-factor afne models. The state space representation 
of the Vasicek and CIR term structure models and the Kalman lter 
algorithm are presented in Section 3. One to three factor versions of 
these models are used to explain the dynamics of the term structure of 
GOJ bonds for the period 24 September 2004 to 28 July 2006. The data 
description and empirical results are reported in Section 4. Section 5 
provides a brief conclusion.

2.0  Equilibrium Multifactor Afne Models of the Term Structure

The Vasicek (1977) and CIR (1985) models fall in the class known 
as “equilibrium models of the term structure” and are the two most 
popular versions of afne diffusion term structure models. These studies 
represent special cases of this class of models: the Gaussian case 
(Vasicek) and the non-Gaussian case (CIR). Both models rely on specic 
assumptions about the stochastic nature of state variables to obtain 
information on the dynamic evolution of the term structure within an 
economic environment. The distinct features of these models are that 
the market price of risk is identied either exogenously or endogenously 
and the instantaneous short rate is explicitly specied as a function of 
unobserved state variables.6  The main difference between these models 
is that the short rate in the CIR model is specied as a square root process 
that is proportional to the level of the interest rate, unlike the Vasicek 
model which assumes a constant variance. This feature prevents the 
occurrence of negative rates under certain restrictions.7

 Single-factor term-structure models describe the dynamics of 
the instantaneous short rate. Hence, these models can only account for 
parallel shifts in the yield curve. In practice, however, other factors 
may inuence different sections of the yield curve allowing for various 

6      The market price of risk, otherwise called the Sharpe ratio, refers to the 
expected standardised excess rate of return above the risk-free rate from 
a specic zero-coupon bond.

7      See Subrahmanyam (1996) for an extensive discussion on the Vasicek and 
CIR models as well as other seminal term structure models.



shapes such as twists and inverse humps. Alternatively, the exibility 
inherent in multi-factor term-structure models allows for a wider range 
of possible yield curve shapes. Three-factor term-structure models 
are usually estimated in practice to explain the dynamics of the term 
structure of interest rates. The specication of three factors relies on 
the seminal study by Litterman and Scheinkman (1991), based on 
standard principle component analysis, which found that three factors 
corresponding to the level, curvature and slope of the yield curve 
explained the term structure of US Treasury bond yields in the 1980s. 
However, many studies have found that the inclusion of additional 
factors does not increase the performance of term structure models.8  
Consistent with this nding, the Litterman and Scheinkman (1991) study 
determined that almost 90.0 per cent of the variation in US Treasury 
yields was driven by the variation in the rst factor.

Multifactor afne models of the term structure represent the yields 
of securities as afne functions of a vector of  K unobservable state 
variables or factors, X = (X1, X2, ..., XK)’, which is governed by the 
following multidimensional diffusion process9 

           . (1)

The instantaneous short rate is given as

       (2)

The factors, Xi (t), are assumed to be independently generated 
by the Ornstein-Uhlenbeck (O-U) process in the Vasicek (Gaussian) 
case represented as

8      See, for example, Chatterjee (2005).

9      A function  F:ℜn → ℜ is afne if there exist some coefcients a ∈ℜ and  
such that F(X) = a+bT X,   ∀X ∈ℜn.
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 dXi (t) = κi (θi - Xi (t)) dt + σi dWi  (t), i = 1, ..., K (3)

and the square-root process in the CIR (non-Gaussian) case represented 
as
       (4)

where κi , θi and  σi are the speed of mean reversion, long-term mean 
and volatility parameters, respectively, and Wi(t) denotes the independent 
Wiener processes under the risk-neutral pricing measure, Φ.

The nominal pricing formula for a pure discount bond with a face 
value of $1 maturing at T is

       (5)

where Bi (T) and Ai (T), in the Vasicek model have the following 
forms

       (6)

  
       (7)

and where Ai (T) and Bi (T), in the CIR model have the following 
forms

        
       (8)

      

        (9)

   
and                              . The risk premium for each state variable  
is  λiXi where the xed parameter λi is the market price of risk for 
the corresponding state variable and is negatively related with the 
risk premium. 



The pricing formula for a coupon bond with a face value of $1 

maturing   at  T   with   m  coupons,  Ci,  to  be   paid    at    Ti   is                                                               

                                     with an implied yield to maturity obtained by 

solving                                         .   However,  φ (X,T) would not be normally 

distributed given its nonlinear relationship with X (t).

3.0   The State-Space Approach to Estimate Multi-Factor Term 
Structure Models

A state-space approach is adopted in this paper to estimate the 
unknown parameters and extract the unobservable state variables. A state-
space representation is a dynamic system that comprises measurement 
equations, which condition observed variables on unobserved or state 
variables, as well as transition equations, which describe the path of 
the state variables. This system may be expressed in a form that may be 
examined using the Kalman lter which originates from the engineering 
control literature.10 The Kalman lter is an algorithm for sequentially 
updating a linear projection for the system using information from 
the observed variables.11 The exact state-space representation for a 
multi-factor model with state vector  X(t)  is based on the assumption 
that  is a Markov process with  X(0) ~ δ (0) [X(0)] and  X(t)│X(t-1) ~ 
δ [X(t)│X (t-1]  where  δ (0) [X(0)] and  δ [X(t)│X (t-1] represent the 
density of the initial state vector and the transition density, respectively.

3.1 The CIR (non-Gaussian) model

Consider the following CIR square-root process for the spot 
interest rate

       (10)

10    See Duan and Simonato (1995), Babbs and Nowman (1999), Chen and 
Scott (2002), De Jong (1998), Geyer and Pichler (1999) and Lund (1997) 
for applications of the Kalman lter to term structure models.

11     See Hamilton (1994).
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The change in the instantaneous short rate has a mean-reverting 
drift as well as a variance which is proportional to the level of the short 
rate. The afne drift  µ(t) = κ(θ - r(t))  ensures that if (r(t) > θ r (t) 
< θ) then (dr(t) < 0 (dr(t)>0) should hold under the assumption. The 
Feller (1951) condition 2º¸ < Ã2 ensures that the process has a reecting 
boundary at r (t) = 0 so that the conditional variance σ2 r(t) does 
not collapse to zero. This condition does not allow the process to be 
nonstationary (i.e. κ = 0,).

The solution for nominal price of a pure discount bond with a face 
value of $1 maturing at  T is

  P (T) = A(t) exp (-B (T) r (t))  (11)

where andare matrices with individual elements depicted by equations (8) 
and (9), respectively. The individual elements of and  are

or, in the K = 3 - factor     (12)



and
       (13)

The limit of the yield to maturity, or the long-term yield, as the time 

to maturity gets longer is                                                                          .
The unobservable state variables for the CIR model are distributed 

conditionally as non-central  X2 variates. In order to estimate the 
unobservable state variables, the exact transition density is substituted 
by a normal density X(t)│X(t-1) ˜ N(µ (t)m ∑ (t)). The matrices for 
the conditional mean and conditional variance of  for the CIR model are 
determined such that they are equal to the rst two moments of the exact 
transition density with elements dened as

       

 (14)

and the matrix,  ∑(t), has  K diagonal elements

  
       (15)

3.2 The Vasicek (Gaussian) model

Consider the following Vasicek spot interest rate O-U process

  dr(t) = κ (θ - r (t)) dt + σ dW(t)  (10’)

and κ > 0 is required for the process to be stationary.
The solution for nominal price of a pure discount bond with a face 

value of $1 maturing at T is

  P(T) = A(T) exp (B(T)r(t))  (11’)
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where B(T) and A(T)are matrices with individual elements depicted by 
equations (6) and (7), respectively. The individual elements of X(T)and  
Y (T) are the same as equations (12) and (13) for the CIR model. The 
matrices for the conditional mean and conditional variance of  X(T) 
for the Vasicek model are

        
                (14’)

and
       (15’)12 

3.3 The Kalman Filter

The continuously compounded yield to maturity on a pure discount 
bond is

       (16)

which afne in the unobserved vector of state variables Xi (T).  In order 
to estimate the system, it is assumed that yields for the N  maturities 
are observed with errors of unknown magnitudes. Hence, equation 
(16) may be expressed as

       (17)

where β = (θ κ σ λ h)’  is a vector of unknown parameters and ε 
(t) has zero mean and variance, H (t), but not necessarily normally 
distributed. Equation (17), which is the measurement equation of the 
state-space model, is expressed in stacked form as

 

12    See Düllmann and Windfuhr (2000).



       (18)
 

The transition equation of the state-space model over the time 
interval  ∆t of the discrete sample may be expressed as

       (19)

where  

 Var (X(t + ∆t)|X )t)) and ω(t+1) is a K x 1 error vector with 
zero mean and unit variance.

The Kalman filter provides an optimal solution to predicting, 
updating and evaluating the likelihood function for Gaussian state-space 
models. For the non-Gaussian case, the Kalman lter may be used to 
extract approximate rst and second moments of the model. In these 
models the Kalman lter is quasi-optimal and may be used to construct 
an approximate quasi-likelihood function.

Dene the mean state matrix as

       (20)
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and the state covariance matrix as

           (21)

where X (t) = E (X (t) | Ω (t)),  represents the information available 
at time t  and a(.) and  b(.) are K x 1 and  K x K  matrices, 
respectively. 

Equations (18) and (19) describe the state space representation. 

The Kalman lter provides optimal estimates,            , of the state 

variables given information at time t + 1. The conditional mean and 

variance of                may be expressed as

       (22)

and

       (23)

Given      is afne in X(t) and                                                                                                    

 and using the law of iterated 

expectations

       (24)

Equations (22) and (24) are referred to as the prediction step.
The second step in calculating the Kalman lter involves updating 

the estimation from the prediction step given the arrival of new informa-
tion based on actual observations, Y(t). Hence, the optimal estimates of 
the state vector and state covariance matrix are given by

       (25)



and 
       (26)

where 
       (27)

       (28)

       (29)

       (30)

Equations (25) and (26) are referred to as the update step and 
equations (27) to (30) are the observation estimation error, transition 
estimation, Kalman gain and covariance matrix of R(t + 1|t),      
respectively. For the Kalman lter to provide an optimal estimation of, 

  the following condition must hold

 
       (31)
 
The log-likelihood function may be expressed as

 

       (32)

with the inverse and determinant of  Fi (t+1) expressed as

       (33)
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In the Gaussian case, the conditional mean and variance of the 
system are correctly specied. Thus, the measurement and transition 
equations and the Kalman filter recursion can be used to conduct 
prediction-error decomposition in the evaluation of the exact likelihood 

function. However, in the non-Gaussian case, the linear Kalman lter 

does not produce               but rather          , the linear projection 

of X(t+1)  on the linear sub-space generated by the observed yields. 

This linearly optimal approximation yields a quasi-likelihood function. 
As discussed in Bollerslev and Wooldridge (1992), the hyperparameter 
vector  that maximises the quasi-likelihood function in the 
non-Gaussian case is approximately consistent and asymptotically 
normal. Alternatively, in the Gaussian case, the quasi-likelihood function 

turns into the exact likelihood function, given normally distributed 

measurement errors. The asymptotic distribution of              
is  

       (34)

where

       (35)

       (36)

 
       (37)

       (38)



where Ψ and Ψ are the conditional mean and variance functions from 
the linear Kalman lter.13

4.0 Estimation Results of Multi-factor Models

Term structure models were originally estimated with either 
time series bond yields or a cross-section of bond yield over different 
maturities. The time series approach incorporates the intertemporal 
dynamics of the term structure but not cross-section information.14 
However, to ensure the model is arbitrage free, a range of maturities 
should be included in the estimation. The cross-section approach which 
uses bond yield data across maturities at a point in time has the drawback 
that the parameters can be unstable over different points in time.15 Hence, 
the incorporation of both time series and cross-section data in empirical 
tests of the term structure allows for the proper use of information from 
both dimensions in order to obtain more accurate parameter estimates.16 
Nevertheless, a main drawback of time series/cross-section models of the 
term structure is that if the number of maturities is larger than the number 
of factors, the model will be under-identied. In order to circumvent 
this problem, this paper follows the approach of most term-structure 
models that rely on panel data which add Gaussian measurement errors 

13    See Duan and Simonato (1998).

14    Examples of recent term structure models that rely on time series data 
include: Anderson and Lund (1997), Brenner, Harjes and Kroner (1996), 
Broze, Scaillet and Zakoian (1995) and Chan, Karolyi, Longstaff and 
Sanders (1992).

15    Examples of recent term structure models that rely on cross-section data 
include: Brown and Dybvig (1986), Brown and Schaefer (1994) and De 
Munnik and Shotman (1994).

16    Examples of recent term structure models that incorporate both times 
series and cross-section data include: Babbs and Nowman (1999), Ball 
and Torous (1996), Chatterjee (2005), Chen and Scott (1995), De Jong 
(2000), Duan and Simonato (1995), Geyer and Pichler (1996), Gibbons 
and Ramaswamy (1993), Jegadeesh and Pennacchi (1996), Lund (1997), 
Pearson and Sun (1994), and Pennacchi (1991).

R. BRIAN  LANGRIN  / 45



46   /  BUSINESS, FINANCE & ECONOMICS IN EMERGING ECONOMIES VOL. 2, NO. 1, 2007

when estimating the relationship between the maturity yields and the 
unobserved state factors to obtain consistent parameters. The inclusion of 
measurement errors is consistent with the existence of market regularities 
such as bid-ask spreads and non-synchronous trading.

4.1 Data Description

The data used in the empirical study consist of daily zero coupon 
GOJ domestic bond yields from 24 September 2004 to 28 July 2006 
obtained from Bloomberg. In particular, the panel data set covers 435 
observations and N=15 interest rates. The maturities included 0.25-, 0.5-, 
1-, 2-,  3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 15-, 20- and 30-year tenors.

The average yield per maturity over the sample period indicates 
that, on average, the GOJ zero coupon term-structure is upward sloping 
(see Table 1). The average spread or premium between the 3-month and 
30-year spot rates is approximately 1,500 basis points. This signicant 
risk premium of 8.0 per cent demanded by investors is likely to be 
caused by unfavourable GOJ debt ratios. The volatility of the spot rates 
is greatest at the 30-year maturity and lowest at the 3-month to 4-year 
maturities. This is inconsistent with expectations of greater volatility at 
the shorter maturities which may be due to greater uncertainty regarding 
the riskiness of GOJ bonds. The skewness and kurtosis parameters 
indicate that the distributions are not normal across maturities.17 The 
skewness coefcient of all yields, except the 20-year yield, is greater 
than zero, indicating a lower downside risk relative to the normal 
distribution. The kurtosis values below 3 for all yields, apart from the 
30-year maturity, implies lower losses when compared to the normal 
distribution.

The zero-coupon yields on the GOJ bonds are highly correlated 
(>80.0 per cent) across all maturities, abstracting from the 20- and 
30-year maturities which exhibit much lower correlation coefcients 
(see Table 2). For the most part, the correlations are close to perfect 

17    The skewness and kurtosis of the Normal distribution is 0 and 3, 
respectively.
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between yields on maturities up to one year apart. As the number of years 
increases between maturities, these pair-wise correlation coefcients 
decline, suggesting the use of a multi-factor term structure model.

4.2 Empirical Results

One-, two-, and three-factor Vasicek and CIR models are estimated 
to obtain the parameter estimates of λ, κ, θ  and σ, the standard 
deviation estimates of the N measurement errors, √hi, as well as the 
values for the log-likelihood and Akaike Information Criterion (AIC)18 

(see Tables 3 and 4; standard errors are shown in italics).
The results for the Vasicek model indicate that all of the λ, θ and 

 parameters are statistically insignicant at the 5.0 per cent level (see 
Table 3). In addition, the standard errors are generally very large and in 
most cases increase signicantly as the number of factors increases. The 
results are mixed for the κ parameters. The κ parameters are statistically 
signicant in the two- and three-factor models but not signicant in the 
one-factor model. All of the estimated standard deviation parameters for 
the measurement errors are statistically signicant. The log-likelihood 
values show strong increases as the number of factors increases. 
However, only one of the 15 estimated standard deviation parameters 
for the measurement errors displays a consistent decline as the number 
of factors increases. The smallest standard deviations for measurement 
equation in the Vasicek models are 2, 3 and 0 basis points for the 5-year 
bond rate in the one-, two- and three-factor models, respectively. The 
largest standard deviations are 1,333, 1,285 and 1,195 basis points for the 
30-year bond rate in the one-, two- and three-factor models, respectively. 
These large measurement errors suggest that the models are unable to 
explain a signicant portion of the 30-year yield movements. 

18    The initial starting values chosen for these parameters were the same across 
both models. Further, the parameter estimates were robust to variations 
in the starting values.
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The parameter results from the CIR model estimation produced 
signicantly more favourable results (see Table 4). Most of the λ, κ, θ 
and σ parameter estimates are statistically signicant at the 5 percent 
level, except θ1 in the one-factor model and   λ, θ1, θ2, κ1, and σ2 
in the three-factor model. All of the parameter estimates are statistically 
signicant for the two-factor model. The estimates of the market price 
of risk parameter, λ, for the CIR models have plausible values. These 
estimated parameters also have large negative values, indicating the 
existence of large and positive risk premia for the latent factors.19 

The estimates of the rate of mean reversion parameter, κ, are also 
signicant except for the rst factor of the three-factor model. These 
estimates range from 0.5 to 0.8, indicating that the mean half lives, or 
the expected time for the short rate to return halfway to its long-term 
average mean, ranges between 0.9 to 1.4 years.20   This narrow range 
of mean half-life values implies that mean reversion for GOJ rates is 
relatively fast and that the factor determines variations primarily at the 
short end of the yield curve. The values for the volatility estimates, σ, 
are statistically signicant and small (12 basis points for each factor), 
indicating a relatively smooth process of mean reversion. Half of the 
parameter estimates for long-term average rate (asymptotic interest rate), 
θ, are signicant and their values are very close to zero. However, the 
condition  2κθ < σ2does not hold, indicating that the origin acts as 
both a reecting and absorbing barrier for the process. This implies that 
the process remains strictly positive. The correlation coefcient between 
factors one and two in the two-factor model is -0.99. The log-likelihood 
value and AIC values improve by 2.1 per cent when moving from 

19    Some examples of risk premium estimates for the ‘level’ factor using CIR 
models in the literature include: -0.1 and 0.0 for the UK and German term 
structure over 6/1/99 – 28/1/04, respectively (see Chatterjee (2005); -0.2 
and 1.1 for the US two-factor and three-factor term structure models over 
1/83 – 12/88 (see Chen and Scott (2002).

20    The half life is computed using: 



Table 3. Estimates from Vasicek Model for
GOJ Bond Yields

______________________________________________________________________
                                One Factor              Two Factor         Three Factor
                              Model                       Model                    Model
________________________________________________________________________
                                                                                                 
     λ1                         -0.5221                             -1.9994                         -0.8451
                           (91.078)                 (519.8486)             (22665.79)
       λ2                                                                  -0.1531                         -0.5714
                                                                  (452.6597)             (876.8248)
       λ3                                                                                                      -11.5331
                                                                                        (23186.01)
       θ1                         -0.4163                             -0.1728                          0.0241
                       (421.6795)                   (66.5715)               (4001.42)
       θ2                                                                    0.1581                         -0.0239
                                                                  (250.7464)                (1186.39)
       θ3                                                                                                         0.0247
                                                                                                          (22.7575)
       ê1                           0.0054                               0.2512                          0.3544
                           (0.0029)                     (0.0163)                 (0.0225)
       ê2                                                                     0.0246                          0.0663
                                                                      (0.0052)                 (0.0079)
       ê3                                                                                                          1.1638
                                                                                                            (0.0670)
       σ1                          0.0002                               0.0010                          0.0037
                           (0.0527)                     (0.4045)                 (2.0927)
       σ2                                                                    0.0003                          0.0000
                                                                      (0.2227)                 (1.3786)
       σ3                                                                                                         0.0030
                                                                                                            (4.7800)
       √h1                        0.0025                               0.0060                          0.0058
                           (0.0001)                     (0.0004)                 (0.0003)
       √h2                        0.0015                               0.0045                          0.0051
                           (0.0001)                     (0.0004)                 (0.0004)
       √h3                        0.0011                               0.0025                          0.0041
                           (0.0000)                     (0.0004)                 (0.0007)
       √h4                        0.0010                               0.0007                          0.0032
                           (0.0001)                     (0.0001)                 (0.0006)
                                                                                                         
__________________________________________________________
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Table 3. Estimates from Vasicek Model for
GOJ Bond Yields - Cont’d

_______________________________________________________________________
                                One Factor              Two Factor         Three Factor
                              Model                       Model                    Model
______________________________________________________________________ 
    √h5                        0.0006                              0.0010                            0.0026
                            (0.0001)                    (0.0002)                  (0.0015)
      √h6                        0.0004                              0.0008                            0.0015
                            (0.0001)                    (0.0002)                  (0.0011)
      √h7                        0.0002                              0.0003                            0.0000
                            (0.0001)                    (0.0001)                  (0.0000)
       √h8                        0.0009                              0.0012                            0.0017
                            (0.0003)                    (0.0005)                  (0.0010)
       √h9                        0.0022                              0.0027                            0.0036
                            (0.0007)                    (0.0010)                  (0.0021)
    √h10                      0.0021                              0.0024                            0.0036
                            (0.0005)                    (0.0006)                  (0.0017)
      √h11                      0.0023                              0.0023                            0.0033
                            (0.0005)                    (0.0005)                  (0.0011)
       √h12                      0.0027                              0.0024                            0.0033
                            (0.0005)                    (0.0004)                  (0.0006)
       √h13                      0.0046                              0.0052                            0.0069
                            (0.0011)                    (0.0013)                  (0.0016)
       √h14                      0.0091                              0.0098                            0.0089
                            (0.0011)                    (0.0014)                  (0.0009)
    √h15                      0.1333                              0.1285                            0.1195
                            (0.0059)                    (0.0052)                  (0.0041)
                                                                           
     LogL             26 319.33                         28 331.25                       29 712.18
     AIC               -120.9164                         -130.1437                      -136.4698
_______________________________________________________________________



Table 4. Estimates from CIR Model for
GOJ Bond Yields

______________________________________________________________________
                                One Factor              Two Factor         Three Factor
                              Model                       Model                    Model
_______________________________________________________________________
                                             
         λ1                       -0.8177                       -0.7042                           -0.0969
                              (0.0026)                (0.0145)                   (0.4332)
         λ2                                                       -0.8206                           -0.4453
                                                                    (0.0074)                   (0.0344)
         λ3                                                                                            -0.5964
                                                                                                            (0.0460)
         θ1                           0.0000                       -0.0002                           -0.0015
                              (0.0000)              (<0.0001)                   (0.0032)
         θ2                                                    0.0002                           -0.0002
                                                                  (<0.0001)                   (0.0004)
      θ3                                                                                     0.0022
                                                                                                            (0.0006)
         ê1                            0.7810                        0.4859                            0.2025
                              (0.0013)                (0.0180)                   (0.4355)
         ê2                                                         0.5861                            0.5156
                                                                    (0.0161)                   (0.0419)
         ê3                                                                                              0.6666
                                                                                                            (0.0557)
         ó1                           0.0017                        0.0012                            0.0001
                              (0.0003)              (<0.0001)                 (<0.0001)
         ó2                                                        0.0012                            0.0006
                                                                  (<0.0001)                   (0.0003)
         ó3                                                                                             0.0005
                                                                                                            (0.0001)
         √h1                       0.0050                        0.0068                            0.0373
                              (0.0003)                (0.0010)                   (0.0335)
         √h2                       0.0043                        0.0023                            0.0171
                              (0.0003)                (0.0001)                   (0.0123)
         √h3                       0.0030                        0.0051                            0.0061
                              (0.0003)                (0.0013)                   (0.0026)
         √h4                       0.0023                        0.0027                            0.0023
                             (-0.0004)                (0.0007)                   (0.0007)
__________________________________________________________
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Table 4. Estimates from CIR Model for
GOJ Bond Yields - Cont’d

________________________________________________________________________
                                One Factor              Two Factor         Three Factor
                              Model                       Model                    Model
_______________________________________________________________________
      √h5                      0.0020                           0.0026                            0.0005
                             (0.0007)                  (0.0008)                 (-0.0003)
         √h6                      0.0012                           0.0015                            0.0003
                             (0.0004)                  (0.0002)                  (0.0001)
         √h7                      0.0006                           0.0012                            0.0001
                             (0.0001)                  (0.0002)                  (0.0001)
         √h8                      0.0332                           0.0012                            0.0007
                             (0.0228)                  (0.0003)                  (0.0002)
         √h9                      0.0039                           0.0016                            0.0015
                             (0.0018)                  (0.0004)                  (0.0005)
      √h10                    0.0038                           0.0015                            0.0012
                             (0.0017)                  (0.0002)                  (0.0001)
         √h11                    0.0034                           0.0016                            0.0020
                             (0.0012)                  (0.0004)                  (0.0002)
         “√h12                  0.0033                           0.0010                            0.1165
                             (0.0009)                  (0.0002)                  (0.0669)
         √h13                    0.0056                           0.0086                            0.0138
                             (0.0016)                  (0.0018)                  (0.0100)
         √h14                    0.0106                           0.0178                            0.0241
                             (0.0015)                  (0.0028)                  (0.0109)
      √h15                    0.1437                           0.1450                            0.1325
                             (0.0072)                  (0.0120)                  (0.0064)
                                                                           
        LogL              25 531.71                      26 068.27                       24 076.15
        AIC                -117.2952                      -119.7392                        -110.557
_______________________________________________________________________



the one-factor model to the two-factor model but deteriorate notably 
(-7.6 per cent) when moving to the three-factor model.21  This is 
taken as evidence that the two-factor model out-performs the one- 
and three-factor models. 

Two of the 15 estimated standard deviation parameters for the 
measurement errors tend to zero as the number of factors increases. 
The smallest standard deviations for measurement equation in the CIR 
models are 6 and 1 basis points for the 5-year bond rate in the one- and 
three-factor models, respectively, and 10 basis points for the 10-year 
bond in the two-factor model. The largest standard deviations are 1,437, 
1,450 and 1,325 basis points for the 30-year bond rate in the one-, two- 
and three-factor models, respectively. Similar to the Vasicek models, 
these values are signicantly larger compared to the relatively low 
standard deviations for the remaining bond rates. Hence, aside from 
the 30-year yield, the factors explain most of the yield uctuations in 
the CIR models, suggesting that the 30-year yield uctuation is not 
adequately explained by the CIR model. 

The time series evolution of the combined factors of the two-factor 
CIR model is compared with the evolutions of the 3-month to 20-year 
bond yields (see Figure 1). The combined factors are strongly correlated 
with these yields, suggesting that monetary policy influences these 
yields. The correlation coefcients between the combined factors of 
the two-factor CIR model and GOJ yields range from 94.0 per cent to 
100.0 per cent for the 3-month to 15-year yields and 82.0 per cent for 
the 20-year yield. The correlation between the combined factors and 
the 30-year yield was signicantly lower with a value of 44.0 per cent 
(see Figure 2). The Kalman lter one-step ahead in-sample predicted 
yields and the actual yields for the two-factor CIR model are illustrated 
in Figure 3. There appears to be a strong positive correlation between 
these predicted and actual yields, particularly for the 4-year to 10-year 
GOJ maturity yields.

21    The likelihood ratio (LR) statistic rejects the null hypothesis that the 
additional factors are not jointly signicant at the 1.0 per cent level. However 
the LR test is unreliable in this case because it does not have the standard 
asymptotic  χ2 distribution when the errors are not Gaussian.
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Figure 1. Evolution of Combined Factors of 
2-Factor CIR Model and the 3-month to 20-year Maturities 

Figure 2. Evolution of Combined Factors of 
2-Factor CIR Model and the 30-year Maturity



Figure 3. Actual and Predicted GOJ Yields
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22    See Litterman and Scheinkman (1991).

4.3 Factor Loadings

The factor loadings which are presented as a function of maturity 
in this section are based on the estimated parameters of the measurement 
equation in the one- and two-factor CIR models (see Figures 4 and 
5). The factor loadings are derived using the coefcients of  B(T)  as 
expressed in equation (26). The term structure of zero yields can be one 
of three possible shapes. If the short rate, r, is less than Y (∞), then 
shape is monotonically increasing. It is monotonically decreasing or 
‘humped’ when r > Y (∞)

As given by equation (14) the sum of all factors in a multi-factor 
term structure model is equal to the level of the instantaneous short rate. 
The coefcients on the factor of the one-factor model and the 1st factor 
of the two-factor model display the same pattern of rapid decline as the 
time to maturity increases, indicating a strong impact for the short-term 
rates. Specically, these factor loadings display steep declines between 
0 and 2.5 years. The declines become less steep as the time to maturity 
increases to around 20 years and level off at very low levels for the 
remaining maturities. These factors could represent ‘level’ factors.22 The 
2nd factor loading of the two-factor model exhibits a steep increase 
for short-term rates between 0 and 5 years which diminishes as the 
time to maturity increases to around 20 years and levels off for the 
remaining maturities. This factor could represent the ‘steepness’ factor 
corresponding to the slope of the yield curve.

5.0 Conclusion

In this paper single- and multi-factor versions of the Vasicek and 
CIR models of the term structure of interest rates were estimated using 
a state space formulation. This approach combines both cross-section 
and time series information based on a system of bond price equations 
to generate estimates of unobservable state variables that drive the 
term structure. The models are estimated for up to three factors using a 



Figure 4. Factor Loading of One-Factor CIR Model

Figure 5. Factor Loadings of Two-Factor CIR Model
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quasi-maximum-likelihood estimator with a Kalman lter. Fifteen bond 
maturities were used comprising the 0.25-, 0.5-, 1-, 2-, 3-, 4-, 5-, 6-,    7-, 
8-, 9-, 10-, 15-, 20- and 30-year computed zero-coupon GOJ bond yields 
covering the period 24 September 2004 to 28 July 2006 to estimate the 
parameters of each model.

Based on the empirical results, the Vasicek models performed very 
poorly relative to the CIR models. Additionally, the results suggested that 
the 2-factor CIR model provided the best representation of the dynamics 
of the yield curve. Based on the factor loadings, extracted factors of 
the two-factor model correspond with the general level and slope of 
interest rates, respectively. The empirical analysis for the 2-factor model 
revealed that the level of the short rate exhibited strong and smooth 
mean reversion and indicated the existence of a large and signicant 
risk premium that increases with time to maturity. The values of the 
parameter estimates for the long-term average rate are all virtually zero. 
However, this is probably a result of the sample period under analysis. 
That is, the period corresponds to a consistent series of downward 
adjustments to Bank of Jamaica repurchase rates following a substantial 
upward adjustment of over 15,000 basis points during an episode of 
substantial foreign exchange market instability in 2003. The strong 
reversal of the short rate since 2003 could explain the dominant 
expectations of investors for considerable loosening of monetary policy 
being reected in the estimated long-term average rate.

A summary of the key ndings of this study, based on signicant 
estimates from two-factor CIR model is as follows:

•        The short-rate (inuenced by monetary policy) exhibits 
rapid decline between 0 and 2.5 years which becomes 
less steep as the time to maturity increases to around 20 
years and levels off to a very low level for the remaining 
bond maturities

•        Risk premium parameters have large negative values, 
indicating the existence of a large and positive risk premia 
for the ‘level and ‘steepness’ factors that increases with the 
time to maturity of GOJ bonds



.23   See, for example, Rudebusch and Wu (2003) for an application of a 
‘macro-nance’ term structure model to US Treasury yields.

•        Long-run average yield parameters reveal that investors were 
expecting lower interest rates over the sample period

•        Mean reversions for the ‘level’ and ‘steepness’ factors 
that drive the dynamics of GOJ yields are relatively fast 
and smooth, indicating relatively short lives for monetary 
shocks

•        The ‘level’ and ‘steepness’ factors explain variations 
primarily at the short end of the yield curve

 
• The Kalman lter one-step ahead predicting yields appear 

to closely track actual GOJ bond yields, particularly for the 
4-year to 10-year maturity yields.

Similar to traditional research on the term structure, this study 
examined a ‘yields-only’ latent-factor model of the dynamics of the yield 
curve. Recent studies in the literature have focused on uncovering the 
relationship between term structure models and specic macroeconomic 
variables. Future research will explicitly incorporate the relationship 
between term structure latent factors and macroeconomic variables of 
interest in the Jamaica case. For example, based on estimated factor 
loadings, this study concluded that the unobserved short rate (related 
to the BOJ policy rate) has a signicant impact on the short end of the 
yield curve and a relatively minimal impact on the long end. Relevant 
observable macroeconomic variables that could be jointly incorporated 
with latent state variables in a state-space model of the term structure 
include monetary aggregates, the expected ination gap, the expected 
output gap, and foreign interest rates, as well as the scal decit to 
account for yield movements at the long end. 23 
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