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Abstract 
The econometric estimation of the term structure of interest rates has received tremendous attention from 
financial- and macro-economists. Measurement of the term structure of interest rates allows for the 
extraction of information on investor’s expectations about future interest rates. This paper estimates two 
famous equilibrium models of the term structure of interest rates using zero-coupon Government of 
Jamaica (GOJ) bonds. Multi-factor versions of the Vasicek (1977) and the Cox, Ingersoll and Ross (CIR; 
1985) models of the nominal interest rate term structure are estimated using a state-space approach. This 
approach simultaneously integrates times series and cross-sectional GOJ bond yields to generate the 
unobservable state variables using a Kalman filter. One to three factor models are estimated using a 
quasi-maximum-likelihood technique. Statistical tests confirm that the two-factor CIR-models best 
accounts for the dynamics of the term structure. The results indicate that the extracted factors are closely 
related with the general level and ‘steepness’ of interest rates. The empirical analysis for the 2-factor 
model revealed that the level of the short rate exhibited strong and smooth mean reversion and indicated 
the existence of a large and significant risk premium that increases with time to maturity. The study finds 
evidence that supports the usefulness of term structure models for monetary policy. Based on estimated 
factor loadings, this study concludes that the unobserved short rate (related to the BOJ policy rate) has a 
significant impact on the short end of the yield curve but a relatively minimal impact on the long end. 
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1.0  Introduction 

The econometric estimation of the term structure of interest rates has received tremendous attention from 

financial- and macro-economists, particularly in the context of bond pricing (see, for example, Babbs and 

Nowman (1999), Dai and Singleton (2000) and Pearson and Sun (1994)). Based on the Expectations 

Theory of the term structure, the yields on long-term bonds are the expected value of risk-adjusted 

average future short-term yields. Hence, measurement of the term structure of interest rates allows for the 

extraction of information on investors� expectations about future interest rates. Term structure 

measurement models have a range of applications. Specifically, interpreting the empirical properties of 

bond yield dynamics that are provided by term structure measurement models is important for a number 

of purposes that include: 

!!!!    Influencing aggregate demand through monetary policy (see, for example, Ang and Piazzesi (2003), 

Diebold, Redebusch and Aruoba (2003), Fendel (2004), Hördahl, Tristani and Vestin (2002), Piazzesi 

(2003) and Rudebusch and Wu (2003)). The short rate is the fundamental policy instrument of the 

central bank. That is, central banks may shift the short end of the yield curve when adjusting their 

policy stance. However, movement in long-term rates have a greater influence on aggregate demand. 

Thus, knowledge of yield curve dynamics provides information to the central bank on how their 

interest rate decisions will impact the future path of the economy. 

!!!!    Risk management through the pricing and hedging of interest rate-contingent claims including caps, 

floors and swaptions (see, for example, Amin and Morton (1994), Buhler et al (1999), Driessen, 

Klaasen and Melenberg (2002), Canabarro (1995), Chernov and Ghysels (2000), Jagannathan et al 

(2000) and Longstaff et al (2001). Further, value-at-risk estimates for fixed income portfolios can be 

obtained through simulating paths for the term structure.1 

!!!!    Public debt management through bond issues (see, for example, Dai and Philippon (2004)). 

Knowledge of the dynamic properties of the yield curve provides information on the impact of fiscal 

policy on investor risk preferences and future yield expectations of bonds across maturities. Fiscal 

authorities can use this information when deciding the length of tenors in their financing decisions. 
                                                 
1 Value-at-Risk is defined as the maximum potential loss on a portfolio for a given horizon and probability. 
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Vasicek (1977) introduced the first no-arbitrage partial equilibrium model of the term structure in which 

the evolution of the short rate exhibits mean reversion. The no-arbitrage condition is necessary to ensure 

that the future evolution of bond prices of different maturities are correctly priced and do not allow for 

arbitrage opportunities. That is, the market price of risk, which is assumed to be an exogenous parameter, 

should be the same across different asset maturities. The mean reversion requirement stipulates that the 

short rate will tend to drift back to an underlying rate. The conditional mean and variance of the stochastic 

process for the short-term interest rate can be computed allowing for the derivation of a closed form 

solution. However, a drawback of the Vasicek model is that the assumption of a Gaussian interest rate 

process allows for negative short rates. 

 

The CIR (1985) model is the first general equilibrium model to explain the term structure of interest rates 

in a well-defined economic environment. The CIR model is developed under the assumptions of infinitely 

lived and single-good economy with identical consumers who maximize a time-additive utility function 

with logarithmic preferences. The single good is produced stochastically with a linear production function 

that evolves in continuous time with the expected return vector and covariance matrix dependent on the 

stochastic evolution of a vector of state variables. Equilibrium is achieved when the wealth of individuals 

is totally invested in the firms based on the choice of consumption and investment allocations that 

maximise their expected utility. The main difference between the Vasicek and CIR models is that the 

short rate is specified as a square root process that is proportional to the level of the interest rate. This 

feature prevents the occurrence of negative rates under certain restrictions, unlike the Vasicek case. 

Additionally, the market price of risk is determined endogenously which facilitates the internal 

consistency of the model.2 

 

                                                 
2 See Subrahmanyam (1996) for a detailed discussion on the Vasicek and CIR models as well as other seminal term 
structure models. 
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Term structure models were originally estimated with either time series bond yields or a cross-section of 

bond yield over different maturities. The time series approach incorporates the intertemporal dynamics of 

the term structure but not cross-section information.3 However, to ensure the model is arbitrage free, a 

range of maturities should be included in the estimation. The cross-section approach which uses bond 

yield data across maturities at a point in time has the drawback that the parameters can be unstable over 

different points in time.4 Hence, the incorporation of both time series and cross-section data in empirical 

tests of the term structure allows for the proper use of information from both dimensions in order to 

obtain more accurate parameter estimates.5 Nevertheless, a main drawback of time series/cross-section 

models of the term structure is that if the number of maturities is larger than the number of factors, the 

model will be under identified. In order to circumvent this problem, most term structure models that rely 

on panel data add Gaussian measurement errors when estimating the relationship between the maturity 

yields and the unobserved state factors to obtain consistent parameters. The inclusion of measurement 

errors is consistent with the existence of market regularities such as bid-ask spreads and non-synchronous 

trading. 

 

Single-factor term-structure models describe the dynamics of the instantaneous short rate. Hence, these 

models can only account for parallel shifts in the yield curve. In practice, however, other factors may 

influence different sections of the yield curve allowing for various shapes such as twists and inverse 

humps. Alternatively, the flexibility inherent in multi-factor term-structure models allows for a wider 

range of possible yield curve shapes. Three-factor term-structure models are usually estimated in practice 

to explain the dynamics of the term structure of interest rates. The specification of three factors rely on 

the seminal study by Litterman and Scheinkman (1991), based on standard principle component analysis, 

                                                 
3 Examples of recent term structure models that rely on time series data include: Anderson and Lund (1997), 
Brenner, Harjes and Kroner (1996), Broze, Scaillet and Zakoian (1995) and Chan, Karolyi, Longstaff and Sanders 
(1992). 
4 Examples of recent term structure models that rely on cross-section data include: Brown and Dybvig (1986), 
Brown and Schaefer (1994) and De Munnik and Shotman (1994). 
5 Examples of recent term structure models that incorporate both times series and cross-section data include: Babbs 
and Nowman (1999), Ball and Torous (1996), Chatterjee (2005), Chen and Scott (1995), De Jong (2000), Duan and 
Simonato (1995), Geyer and Pichler (1996), Gibbons and Ramaswamy (1993), Jegadeesh and Pennacchi (1996), 
Lund (1997), Pearson and Sun (1994), Pennacchi (1991). 
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which found that three factors corresponding to the level, curvature and slope of the yield curve explained 

the term structure of US Treasury bond yields in the 1980s. However, many studies have found that the 

inclusion of additional factors does not increase the performance of term structure models.6 Consistent 

with this finding, the Litterman and Scheinkman (1991) study determined that almost 90.0 per cent of the 

variation in US Treasury yields was driven by the variation in the first factor. 

 

This paper estimates two famous equilibrium models of the term structure of interest rates using zero-

coupon Government of Jamaica (GOJ) sovereign bonds for the period 24 September 2004 to 28 July 

2006. Specifically, multi-factor versions of the Vasicek (1977) and the Cox, Ingersoll and Ross (CIR; 

1985) models of the nominal interest rate term structure are estimated using a state-space approach. This 

approach simultaneously integrates time series and cross-sectional GOJ sovereign yields to generate the 

unobservable state variables using a Kalman filter. The objective of this exercise is to explain the yield 

curve dynamics in Jamaica in order to derive information on investor expectations to support monetary 

and fiscal policy objectives as well as to accurately price bonds and hedging instruments. 

 

The next section focuses on the continuous-time formulation of term structure models beginning with the 

preliminaries associated with term structure modelling in continuous-time. The state space representation 

of the Vasicek and CIR term structure models and the Kalman filter algorithm will then be presented in 

Section 3. One to three factor versions of these models will be used to explain the dynamics of the term 

structure of GOJ bonds for the period 24 September 2004 to 28 July 2006. The data description and 

empirical results are reported in Section 4. Section 5 provides a brief conclusion and policy 

recommendations. 

 

 

 

 

                                                 
6 See, for example, Chatterjee (2005). 
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2.0  Equilibrium Models of the Term Structure 

The Vasicek (1977) and CIR (1985) models fall in the class known as �equilibrium models of the term 

structure.� These models rely on specific assumptions about the stochastic nature of state variables to 

obtain information on the dynamic evolution of the term structure within an economic environment. The 

distinct features of these models are that the market price of risk is identified either exogenously or 

endogenously and the instantaneous short rate is explicitly specified as a function of unobserved state 

variables. The market price of risk, otherwise called the Sharpe ratio, refers to the expected standardised 

excess rate of return above the risk free rate from a specific zero-coupon bond. 

 

The Kalman filter is a relatively new econometric technique that has been used in the recent finance 

literature to estimate the continuous-time multi-factor Vasicek and CIR affine term-structure models.7  

This method is used to determine the relationship between market bond yields and the unobserved state 

variables that drive them.8 Kalman filter estimation involves the estimation of two systems of equations 

known as state-space estimation. The measurement system specifies the affine relationship between an 

observed set of zero-coupon bond yields and unobserved state variables. The system of transition 

equations models the dynamics of the state variables. The Kalman filter algorithm recursively formulates 

an optimal predictor of the unobservable state variable vector from the system of transition equations 

conditional on the measurement system observed zero-coupon yields. Finally, a log-likelihood function 

based on a decomposition of the prediction errors is maximised to obtain the optimal parameter vector. 

 

2.1  Continuous-Time Term Structure Modelling 

The price at time t  of a zero-coupon or pure discount bond maturing at timeT  may be expressed as9  

   ( )( , ) exp ,P t T R t T T = −  .     (1) 

                                                 
7 A function : nF ℜ → ℜ is affine if there exists some coefficients a ∈ ℜ and nb ∈ ℜ  such that 
( ) ,   TF X a b X= + nX∀ ∈ ℜ . 

8 See Duan and Simonato (1995), Babbs and Nowman (1999), Chen and Scott (2002), De Jong (1998), Geyer and 
Pichler (1999) and Lund (1997) for applications of the Kalman filter to term structure models. 
9 Coupon-bearing bonds may be interpreted as a portfolio of pure discount bonds of various face values and 
maturities. 
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Equation (1) may be rearranged to define the yield to maturity or continuously compounded yield as 

   ( )1( , ) ln ,R t T P t T
T

= .      (2) 

The spot rate of instantaneous maturity or the short rate is then 

   ( )( ) lim ,
T t

r t R t T
→

= .      (3) 

Let the continuously compounded forward rate for the period ( ),T T t+  be defined as 

   [ ] ( )ln ( , ) ln ( , )( , ) exp ( , , )
( , )

P P t T P t TP t T f t T
P t T

ττ τ τ
τ
+ −+ = − =   (4) 

It follows that 

   ( )
0

lim , ( , )P t T f t T
Tτ →

∂ =
∂

      (5) 

which may be rewritten as 

   ( ) ( ), exp ( , )
T

t
P t T f t s ds = −  ∫      (6) 

Hence, combining equations (1) and (6) reveals that the yield to maturity or the spot rate for maturity 

T may be construed as the integral of the forward rates over the remaining time to maturity of a pure 

discount bond. That is 

   ( ) ( )1, ( , )
T

t
R t T f t s ds

T
= ∫       (7) 

The dynamics of the short rate is assumed to follow a diffusion process described by the stochastic 

differential equation 

   ( ) ( ) ( ) ( ), ,dr t r t dt r t dW tµ σ= +      (8) 

where ( , )r tµ  represents the drift parameter, ( , )r tσ is the instantaneous volatility of the short rate and 

( )W t represents a Brownian motion or Wiener process. 

 

Using the assumption given by equation (8) and Ito�s lemma10 

                                                 
10 Subscripts indicate the specific derivative. 
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2 2

2

2

( , , )
2

                 =
2r t r

P P PdP r t T r t dt
r t r

P P t P dW

σ

σµ σ

∂ ∂ ∂= ∂ + ∂ + ∂
∂ ∂ ∂
 

+ + ∂ + 
 

    (9) 

Dividing by dt  and taking expectations, as well as assuming that [ ] (1 )E dP dt r Pν= + yields 

  

2

2 2

2

           0 = = (1 )
2 2

r t rr

r t rr r t rr

dPE P P P
dt

dPP P P E P P P r P
dt

σµ

σ σµ µ ν

  = + + 
 

 + + − + + − + 
 

  (10) 

where ν  denotes the risk premium. Invoking the no-arbitrage condition and logarithmic investor 

preferences yield the Sharpe ratio 

  [ ]
i

i

R i

E R r
R
ν λ

σ
−

= =        (11) 

Hence, the basic differential equation to be solved in this equilibrium pricing model is 

  
2

0 =
2r t rr rP P P rP r Pσµ λ σ+ + −+ +       (12) 

where 
PR r

r P
P
σσ =  using Ito�s lemma implies ( )

PR rr P Pν λ λσ= = . 

 

2.1  Multifactor Affine Models  

Multifactor affine models of the term structure represent the yields of securities as affine functions of a 

vector of K  unobservable state variables or factors, 1 2( , , , )KX X X X ′= K , which is governed by the 

following multidimensional diffusion process  

  ( ) ( ) ( ) ( )
1 11K KK K K

d X t X t dt X t d W tµ σ
× ×× ×

   = +    .     (13) 

The instantaneous short rate is given as 

   ( ) ( )0 1

K
i ii

r t X tβ β
=

= +∑ .      (14) 

The factors ( )iX t are assumed to be independently generated by the Ornstein-Uhlenbeck (O-U) process in 

the Vasicek (Gaussian) case represented as 
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  ( ) ( )( ) ( ) ,   1, ,i i i i i idX t X t dt dW t i Kκ θ σ= − + = K     (15) 

and the square-root process in the CIR (non-Gaussian) case represented as 

  ( ) ( )( ) ( ) ( ) ,   1, ,i i i i i i idX t X t dt X t dW t i Kκ θ σ= − + = K    (16) 

where iκ , iθ and iσ are the speed of mean reversion, long-term mean and volatility parameters, 

respectively, and ( )iW t denote independent Wiener processes under the risk-neutral pricing measure ,Φ . 

 

The nominal pricing formula for a pure discount bond with a face value of $1 maturing at T is 

  ( ) ( ) ( ) ( )( )1
1

exp
K

K
i i ii

i
P T A T B T X t

=
=

= −∑∏      (17) 

where ( )iB T  and ( )iA T , in the Vasicek model have the following forms 

  ( ) ( )( )1 1 expi i
i

B T Tκ
κ

= −       (18) 

  ( )
( )( ) ( )

2
2

22

2

2
exp

4

i

i

i i i
i i

i i i
i

i

B T T B T
A T

λσ σκ θ κ σ
κκ

   − − −      = −
 
 
 

  (19) 

and where ( )iA T and ( )iB T , in the CIR model have the following forms 

  ( ) ( )
( ) ( ) ( )( )

2
2

2 exp 2

2 exp 1 exp

i i

i
i i i i

i
i i i i i i

T
A T

T T

κ θ
σγ κ λ γ

γ γ κ λ γ γ

  + +  =
+ + + −  

   (20) 

  ( ) ( )( )
( ) ( ) ( )( )

2 1 exp

2 exp 1 exp
i

i
i i i i i i

T
B T

T T

γ

γ γ κ λ γ γ

−
=

+ + + −
    (21) 

and ( )2 22i i i iγ κ λ σ= + + . The risk premium for each state variable is i iXλ  where the fixed parameter iλ  

is the market price of risk for the corresponding state variable and is negatively related with the risk 

premium.  
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The pricing formula for a coupon bond with a face value of $1 maturing at T  with m  coupons, iC , to be 

paid at iT  is ( ) ( )1

m
ii

T C P T
=

Ψ =∑ , with an implied yield to maturity obtained by 

solving ( ) 1
exp( )m

i ii
T C Tϕ

=
Ψ = −∑ . However, ( , )X Tϕ would not be normally distributed given its nonlinear 

relationship with ( )X t . 

 

3.0 The State-Space Approach to Estimate Multi-Factor Term Structure Models 

A state-space approach is adopted in this paper to estimate the unknown parameters and extract the 

unobservable state variables. A state-space representation is a dynamic system that comprises 

measurement equations, which condition observed variables on unobserved or state variables, as well as 

transition equations, which describe the path of the state variables. This system may be expressed in a 

form that may be examined using the Kalman filter which originates from the engineering control 

literature. The Kalman filter is an algorithm for sequentially updating a linear projection for the system 

using information from the observed variables.11 The exact state-space representation for a multi-factor 

model with state vector ( )X t  is based on the assumption that (0), (1), , ( )X X X tK  is a Markov process with 

[ ](0) ~ (0) (0)X Xδ  and ( ) ( )1X t X t − ( ) ( )~ 1X t X tδ  −   where [ ](0) (0)Xδ  and ( ) ( )1X t X tδ  −   

represent the density of the initial state vector and the transition density, respectively. 

 

3.1  The CIR (non-Gaussian) model 

Consider the following CIR square-root process for the spot interest rate 

   ( ) ( )( ) ( ) ( )dr t r t dt r t dW tκ θ σ= − +      (22) 

Substituting equation (22) into equation (9) yields the following basic differential equation to be solved in 

the CIR model12 

   ( ) ( )
2

1  =
2r r t rr

rrP P P r P P Pσλ κ θ+ − + +      (23�) 

                                                 
11 See Hamilton (1994). 
12 See Benninga and Wiener (1998). 
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which produces the following solution 

   ( ) ( ) ( ) ( )( )expP T A T B T r t= −       (24) 

where ( )A T and ( )B T are matrices with individual elements depicted by equations (20) and (21), 

respectively. The individual elements of ( )X T  and ( )Y T  are 

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )
( )
( )

( )( )
( )( )
( )( )

( )1 11 1

2 2 2

3 3 3

1 exp exp 1 ,

 t-1 ~ 0, t ;  1, ,

or, in the 3-factor case

1 exp exp          0                    0

1 exp 0       

1 exp

i i i i i iX t t t X t t

t i K

K

tX t t

X t t

X t t

θ κ κ η

η

θ κ κ
θ κ

θ κ

= − − ∆ + − ∆ − +

Ω Ν ∑ =

=

 − − ∆  − ∆
  
 = − − ∆ + 
  
 − − ∆   

K

( )
( )

( )
( )
( )

( )
( )
( )

1 1

2 2 2

3 3 3

1

         exp              0 1

0                         0          exp 1

X t t

t X t t

t X t t

η
κ η

κ η

     −
     

− ∆ − +     
     − ∆ −     

 (25) 

and 

   ( ) ( ) ( ) ( )
1

ln , ,
,   1, ,K i j i j i

i j i
j j

A t s B t s X t
Y s j M

s t s t=

−
= + =

− −∑ K    (26) 

The limit of the yield to maturity, or the long-term yield, as the time to maturity gets longer 

is ( ) ( )( )lim logi T
Y P T T

→∞
∞ = −  2 ( )i i i i iκ θ κ λ γ= + + . 

 

The unobservable state variables for the CIR model are distributed conditionally as non-central 2χ  

variates. In order to estimate the unobservable state variables, the exact transition density is substituted by 

a normal density ( ) ( ) ( ) ( )( )1 ~ ,X t X t N t tµ− Σ . The matrices for the conditional mean and conditional 

variance of ( )X t  for the CIR model are determined such that they are equal to the first two moments of 

the exact transition density with elements defined as 

   ( ) ( ) ( ) ( )1 exp exp 1i i i i it t t Y tµ θ κ κ = − − ∆ + − ∆ −      (27) 

and the matrix, ( )tΣ , has K  diagonal elements 
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  ( ) ( ) ( ) ( ) ( )21 exp 1 1 exp exp 1
2

i
i i i i i i

i

t
t t t Y t

κ
θ σ κ κ

κ
 − − ∆   ∑ = − − ∆ + − ∆ −       

  (28) 

 

3.2  The Vasicek (Gaussian) model 

Consider the following Vasicek spot interest rate O-U process 

   ( ) ( )( ) ( )dr t r t dt dW tκ θ σ= − +       (22�) 

Hence, the basic differential equation after substituting equation (22�) into equation (9) yields 

   ( )
2

0 =
2r t rr rr P P P rP r Pσκ θ λ σ− + + −+ +      (29) 

or 

 ( ) ( )( ) ( )( ) ( ) ( )( )
2 2

3

1exp 1 exp 1 exp
4

P T T Y r TY Tσκ κ
κ κ
 

= − − ∞ − − ∞ − − − 
 

   (30) 

which produces the following solution 

   ( ) ( ) ( ) ( )( )expP T A T B T r t=       (24�) 

where ( )B T and ( )A T are matrices with individual elements depicted by equations (18) and (19), 

respectively. The individual elements of ( )X T  and ( )Y T  are the same as equations (25) and (26) for the 

CIR model. The matrices for the conditional mean and conditional variance of ( )X t  for the Vasicek 

model are 

   ( ) ( ) ( ) ( )1 exp exp 1i i i i it t t Y tµ θ κ κ = − − ∆ + − ∆ −      (27�) 

and 

   ( ) ( )2 1 exp 2
2

ii
i

i i

t
t

κσ
κ κ
 − − ∆

∑ =  
  

      (28�)13  

 

 

 

                                                 
13 See Dullmann and Windfuhr (2000). 
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3.3  The Kalman Filter 

The continuously compounded yield to maturity on a pure discount bond is 

  ( ) ( ) ( ) ( )
1

lnK i i i
i i

A T B T X t
Y T

T T=
= − +∑      (31) 

which affine in the unobserved vector of state variables ( )iX t . In order to estimate the system, it is 

assumed that yields for the N  maturities are observed with errors of unknown magnitudes. Hence, 

equation (31) may be expressed as 

  ( ) ( ) ( ) ( )
1

ln ; ;
( )K i i i

i i

A T B T X t
Y T t

T T
β β

ε
=

= − + +∑     (32) 

where ( )    hβ θ κ σ λ ′= is a vector of unknown parameters and ( )tε  has zero mean and variance, ( )H t , 

but not necessarily normally distributed. Equation (32), which is the measurement equation of the state-

space model, is expressed in stacked form as 

 

( )( )
( )( )

( )( )

( )( )
( )( )

( )( )

( ) ( )
( ) ( )

( ) ( )

( )

( )
( )

( )

1 1 1 1 1 1

2 2 2 2 2 2

1

1 1

; , ln ; 1 ;

; , ln ; 1 ;
                                      
1 ;; , ln ;

K

N N NN N N
N KN N

Y X t T A T T T B T t

Y X t T A T T T B T t
X t

T B T tY X t T A T T

β β β ε

β β β ε

β εβ β

×

×× ×

   −    
      
   −   = + +      
      
      −         

M MM M

( ) ( )( )

( )

( )
( )

( )

1

1

2

,

where              t ~ 0,

t   0        0

0    t       0
                        .

                 0
0      0       

N

N

H t

h

h
H t

h t

ε

×








Ν

 
 
 =  
 
 
 

L

L

M M O

L

  (33) 

  

The transition equation of the state-space model over the time interval t∆ of the discrete sample may be 

expressed as 

  ( ) ( )( ) ( )( ) ( )
1

21 ; , ; , 1X t X t t X t t tβ β ω+ = Γ ∆ + Σ ∆ +    (34) 

where ( )( ) ( ) ( )( ); ,X t t E X t t X tβΓ ∆ = + ∆ , ( )( ) ( ) ( )( ); ,X t t Var X t t X tβΣ ∆ = + ∆  and ( )1tω + is a 1K ×  

error vector with zero mean and unit variance. 
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The Kalman filter provides an optimal solution to predicting, updating and evaluating the likelihood 

function for Gaussian state-space models. For the non-Gaussian case, the Kalman filter may be used to 

extract approximate first and second moments of the model. In these models the Kalman filter is quasi-

optimal and may be used to construct an approximate quasi-likelihood function. 

 

Define the mean state matrix as 

   ( )( ) ( ) ( ) ( )� �; , , ,X t t a t b t X tβ β βΓ ∆ = ∆ + ∆      (35) 

and the state covariance matrix as 

 ( ) ( ) ( )( )1 1P t t Var X t t+ = + Ω  and ( ) ( ) ( )( )P t Var X t t= Ω                 (36) 

where ( ) ( ) ( )( )X t E X t t= Ω , ( )tΩ represents the information available at time t  and ( )a ⋅ and ( )b ⋅  are 

1K ×  and K K×  matrices, respectively.  

 

Equations (33) and (34) describe the state space representation. The Kalman filter provides optimal 

estimates, ( )� 1X t + , of the state variables given information at time 1t + . The conditional mean and 

variance of ( )� 1X t +  may be expressed as 

  ( ) ( ) ( ){ } ( ) ( ) ( )� �1 1X t t E t X t a b X tβ β+ = + = +      (37) 

and 

 ( ) ( ) ( ) ( ) ( ) ( )� �1 1 1 1 1P t t E t X t X t t X t X t t
 ′   + = + − + + − +     

    (38) 

Given ( )( ); ,X t tβΣ ∆  is affine in ( )X t  and ( ) ( )( ) ( ) ( )
1

2, ; , 1 0Cov X t X t t t tβ ω Σ ∆ + Ω = 
 

 and using the law 

of iterated expectations 

  ( ) ( ) ( ) ( ) ( )( )�1 , , ; , .P t t b t P t b t X t tβ β β′+ = ∆ ∆ +Σ ∆     (39) 

Equations (37) and (39) are referred to as the prediction step.  



 14

The second step in calculating the Kalman filter involves updating the estimation from the prediction step 

given the arrival of new information based on actual observations, ( )Y t . Hence, the optimal estimates of 

the state vector and state covariance matrix are given by 

  ( ) ( ) ( ) ( )� �1 1 1 1X t X t t K t tν+ = + + + +       (40) 

and  

  ( ) ( ) ( ) ( ) ( )1 1 1 1 1P t P t t K t B t P t t+ = + − + + +      (41) 

where  

   ( ) ( ) ( )1 1 1t Y t Y t tν + = + − +       (42) 

   ( ) ( ) ( ) ( )�1 1Y t t B t X t t A t+ = + +       (43) 

   ( ) ( ) ( ) ( ) 11 1 1 1K t P t t B t F t −′+ = + + +      (44) 

   ( ) ( ) ( ) ( ) ( )1 1 1 1 1F t B t P t t B t H t′+ = + + + + +     (45) 

Equations (39) and (40) are referred to as the update step and equations (42) to (45) are the observation 

estimation error, transition estimation, Kalman gain and covariance matrix of ( )1R t t+ , respectively. For 

the Kalman filter to provide an optimal estimation of ( )� 1X t + , the following condition must hold  

   ( ) ( )( ) ( )�1 1 , 0;   1, , 1.Cov X t X t Y s s t + − + = = +  
K     (46)  

The log-likelihood function may be expressed as 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1

1 1

1 1 1log 1 , , ; log 2 1 log 1 1 1 1 ,
2 2 2

N N

i i i i
i i

L Y Y N T N F t t F t tβ π ν ν−

= =

′ = − − − + − + + +  ∑ ∑K  (47) 

with the inverse and determinant of ( )1iF t +  expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1
11 1 1 11

1 1

1 1 1 1 1 1 1 1 1 1 ,

1 1 * 1 * 1 1 1 1 .

i

i

F t H t H t B t P t t B t H t B t B t H t

F t H t P t t P t t B t H t B t

−
−− − − −−

− −

 ′ ′+ = + − + + + + + + + + + 
 

′+ = + + + + + + +
 (48) 

In the Gaussian case, the conditional mean and variance of the system is correctly specified. Thus, the 

measurement and transition equations and the Kalman filter recursion can be used to conduct prediction-
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error decomposition in the evaluation of the exact likelihood function. However, in the non-Gaussian 

case, the linear Kalman filter does not produce ( )� 1X t +  but rather ( )1X t + , the linear projection of 

( )1X t +  on the linear sub-space generated by the observed yields. This linearly optimal approximation 

yields a quasi-likelihood function. As discussed in Bollerslev and Wooldridge (1992), the hyperparameter 

vector ( )� Tβ  that maximises the quasi-likelihood function in the non-Gaussian case is approximately 

consistent and asymptotically normal. Alternatively, in the Gaussian case, the quasi-likelihood function 

turns into the exact likelihood function given normally distributed measurement errors. The asymptotic 

distribution of ( )    hβ θ κ σ λ ′=  is 

  ( ) ( )( ) ( )1 1� �� �0 ~ 0, ( ) ( ) ( )T T N F T G T F Tβ β − −−      (47) 

where 

  ( ) ( )( )1

1 �� ( ) ; ,T

t
F T f T Y t T

T
β

=
= ∑        (48) 

  
( ) ( )( ) ( ) ( )( )

1

� �ln ; , ln ; ,1� ( ) � �
T

t

l T Y t t l T Y t t
G T

T

β β

β β=

′∂ ∂
=

∂ ∂
∑     (49) 

and 

  ( )( ) ( )1 1 1( ) ( ) 1 ( ) ( )�; , ( ) ( ) ( )
2

t t t tf Y t t t t tψ ψβ
β β β β

− − −′ ′∂ ∂ ∂Ψ ∂Ψ= Ψ + Ψ ⊗Ψ
∂ ∂ ∂ ∂

  (50) 

  ( ) ( )1
; ( ), ; ( ),T

t
L Y T T l Y t Tβ β

=
=∑        (51) 

where ψ andΨ are the conditional mean and variance functions from the linear Kalman filter.14 

 

4.0 Estimation Results of Multi-factor Models 

4.1  Data Description 

The data used in the empirical study consists of daily zero coupon GOJ domestic bond yields from 24 

September 2004 to 28 July 2006 obtained from Bloomberg. In particular, the panel data set covers 435 

                                                 
14 See Duan and Simonato (1998). 
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observations and N=15 interest rates. The maturities included 0.25-, 0.5-, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 

10-, 15-, 20- and 30-year tenors. 

Table 1. Summary Statistics: GOJ Zero Coupon Bond Yields 9/24/2004 - 7/28/2006 
 Maturity 3 mth 6 mth 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr 15 yr 20 yr 30 yr
 Mean 14.75 14.84 14.97 15.27 15.52 15.77 16.05 16.36 16.69 16.87 17.01 17.11 17.76 19.28 30.90
 Median 13.96 14.31 14.35 14.86 15.17 15.36 15.56 15.77 16.10 16.51 16.66 16.79 17.21 19.23 30.61
 Maximum 17.32 17.32 17.32 17.47 17.77 18.03 18.64 19.35 20.14 20.43 20.38 20.37 20.63 21.65 70.27
 Minimum 13.22 13.29 13.30 13.44 13.52 13.66 13.80 13.98 14.06 14.14 14.24 14.33 14.92 15.98 18.49
 Std. Dev. 1.37 1.32 1.26 1.24 1.31 1.38 1.48 1.59 1.72 1.71 1.63 1.58 1.44 1.46 8.16
 Skewness 0.72 0.71 0.67 0.60 0.58 0.56 0.55 0.59 0.64 0.67 0.63 0.60 0.54 -0.13 0.85
 Kurtosis 1.93 1.96 1.93 1.93 1.88 1.85 1.86 1.93 2.06 2.22 2.20 2.19 2.14 1.95 4.82  

The average yield per maturity over the sample period indicates that, on average, the GOJ zero coupon 

term-structure is upward sloping (see Table 1). The average spread or premium between the 3-month and 

30-year spot rates is approximately 1 500 basis points. This significant risk premium of 8.0 per cent 

demanded by investors is likely to be caused by unfavourable GOJ debt ratios. The volatility of the spot 

rates is greatest at the 30-year maturity and lowest at the 3-month to 4-year maturities. This is inconsistent 

with expectations of greater volatility at the shorter maturities which may be due to greater uncertainty 

regarding the riskiness of GOJ bonds. The skewness and kurtosis parameters indicate that the 

distributions are not normal across maturities.15 The skewness coefficient of all yields, except the 20-year 

yield, is greater than zero indicating a lower downside risk relative to the normal distribution. The 

kurtosis values below 3 for all yields apart from the 30-year maturity, implies lower losses when 

compared to the normal distribution. 

 

The zero-coupon yields on the GOJ bonds are highly correlated (>80.0 per cent) across all maturities, 

abstracting from the 20- and 30-year maturities which exhibit much lower correlation coefficients (see 

Table 2). For the most part, the correlations are close to perfect between yields on maturities up to one 

year apart. As the number of years increase between maturities, these pair-wise correlation coefficients 

decline, suggesting the use of a multi-factor term structure model. 

 

 

 

                                                 
15 The skewness and kurtosis of the Normal distribution is 0 and 3, respectively. 
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Table 2. Correlation Matrix: GOJ Zero Coupon Bond Yields 9/24/2004 - 7/28/2006 
3-month 6-month 1-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year 15-year 20-year 30-year

3-month 1.00 0.98 0.96 0.93 0.92 0.92 0.93 0.93 0.93 0.91 0.90 0.90 0.92 0.81 0.48
6-month 1.00 0.99 0.95 0.94 0.94 0.95 0.94 0.94 0.92 0.91 0.91 0.93 0.83 0.48

1-year 1.00 0.99 0.98 0.98 0.98 0.97 0.96 0.95 0.94 0.94 0.95 0.83 0.46
2-year 1.00 1.00 1.00 0.99 0.98 0.97 0.97 0.96 0.96 0.96 0.79 0.39
3-year 1.00 1.00 0.99 0.98 0.97 0.97 0.96 0.96 0.96 0.79 0.38
4-year 1.00 1.00 0.99 0.98 0.98 0.97 0.97 0.97 0.81 0.41
5-year 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.82 0.43
6-year 1.00 1.00 0.99 0.99 0.99 0.99 0.83 0.45
7-year 1.00 1.00 0.99 0.99 0.99 0.83 0.46
8-year 1.00 1.00 1.00 0.99 0.80 0.43
9-year 1.00 1.00 0.98 0.78 0.41

10-year 1.00 0.98 0.79 0.41
15-year 1.00 0.89 0.52
20-year 1.00 0.71
30-year 1.00  

4.2 Empirical Results 
 
One-, two-, and three factor Vasicek and CIR models are estimated to obtain the parameters estimates of 

λ, κ, θ and σ, the standard deviation estimates of the N measurement errors, √hi, as well as the values for 

the log-likelihood and Akaike Information Criterion (AIC)16 (see Tables 3 and 4; standard errors are 

shown in italics). 

 

The results for the Vasicek model indicate that all of the λ, θ and σ parameters are statistically 

insignificant at the 5.0 per cent level (see Table 3). In addition, the standard errors are generally very 

large and in most cases increase significantly as the number of factors increases. The results are mixed for 

the κ parameters. The κ parameters are statistically significant in the two- and three-factor models but not 

significant in the one-factor model. All of the estimated standard deviation parameters for the 

measurement errors are statistically significant. The log-likelihood values show strong increases as the 

number of factors increase. However, only one of the 15 estimated standard deviation parameters for the 

measurement errors displays a consistent decline as the number of factors increase. The smallest standard 

deviations for measurement equation in the Vasicek models are 2, 3 and 0 basis points for the 5-year bond 

rate in the one-, two- and three-factor models, respectively. The largest standard deviations are 1 333, 

1285 and 1195 basis points for the 30-year bond rate in the one-, two- and three-factor models, 

respectively. These large measurement errors suggest that the models are unable to explain a significant 

portion of the 30-year yield movements.  

 

                                                 
16 The initial starting values chosen for these parameters were the same across both models. Further, the parameter 
estimates were robust to variations in the starting values. 
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The parameter results from the CIR model estimation produced significantly more favourable results (see 

Table 4). Most of the λ, κ, θ and σ parameter estimates are statistically significant at the 5 percent level, 

except θ1 in the one-factor model and λ1, θ1, θ2, κ1 and σ2 in the three-factor model. All of the parameter 

estimates are statistically significant for the two-factor model. The estimates of the market price of risk 

parameter, λ, for the CIR models have plausible values. These estimated parameters also have large 

negative values, indicating the existence of large and positive risk premia for the latent factors.17  

 

The estimates of the rate of mean reversion parameter, κ, are also significant except for the first factor of 

the three-factor model. These estimates range from 0.5 to 0.8, indicating that the mean half lives, or the 

expected time for the short rate to return halfway to its long-term average mean, ranges between 0.9 to 1.4 

years.18 This narrow range of mean half-life values implies that mean reversion for GOJ rates is relatively 

fast and that the factor determines variations primarily at the short end of the yield curve. The values for 

the volatility estimates, σ, are statistically significant and small (12 basis points for each factor), 

indicating a relatively smooth process of mean reversion. Half of the parameter estimates for long-term 

average rate, θ, are significant. However, their values are very close to zero and the condition 2κθ < σ2 

does not hold, indicating that zero could be a reflecting barrier for the process. The correlation coefficient 

between factors one and two in the two factor model is -0.99. The log-likelihood value and AIC values 

improve by 2.1 per cent when moving from the one-factor model to the two-factor model but deteriorates 

notably (-7.6 per cent) when moving to the three-factor model.19 This is taken as evidence that the two-

factor model out-performs the one- and three-factor models.  

 
 
 
 
 

                                                 
17 Some examples of risk premium estimates for the �level� factor using CIR models in the literature include: -0.1 
and 0.0 for the UK and German term structure over 6/1/99 � 28/1/04, respectively (see Chatterjee (2005); -0.2 and 
1.1 for the US two-factor and three-factor term structure models over 1/83 � 12/88 (see Chen and Scott (2002). 
18 The half life is computed using: exp( ) ln(0.5)j jt tκ κ− ⇒ = − . 
19 The likelihood ratio (LR) statistic rejects the null hypotheses that the additional factors are not jointly significant 
at the 1.0 per cent level. However the LR test is unreliable in this case because it does not have the standard 
asymptotic χ2 distribution when the errors are not Gaussian. 
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Table 3.  
Estimates from Vasicek Model for GOJ Bond Yields: 9/24/2004 to 7/28/2006  

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 One Factor 
Model

Two Factor 
Model

Three Factor 
Model 

  
λ1 -0.5221 -1.9994 -0.8451 

 (91.078) (519.8486) (22665.79) 
λ2 -0.1531 -0.5714 

  (452.6597) (876.8248) 
λ3 -11.5331 

   (23186.01) 
θ1 -0.4163 -0.1728 0.0241 

 (421.6795) (66.5715) (4001.42) 
θ2 0.1581 -0.0239 

  (250.7464) (1186.39) 
θ3 0.0247 

   (22.7575) 
κ1 0.0054 0.2512 0.3544 

 (0.0029) (0.0163) (0.0225) 
κ2 0.0246 0.0663 

  (0.0052) (0.0079) 
κ3 1.1638 

   (0.0670) 
σ1 0.0002 0.0010 0.0037 

 (0.0527) (0.4045) (2.0927) 
σ2 0.0003 0.0000 

  (0.2227) (1.3786) 
σ3 0.0030 

   (4.7800) 
√h1 0.0025 0.0060 0.0058 

 0.0001 0.0004 0.0003 
√h2 0.0015 0.0045 0.0051 

 0.0001 0.0004 0.0004 
√h3 0.0011 0.0025 0.0041 

 0.0000 0.0004 0.0007 
√h4 0.0010 0.0007 0.0032 

 0.0001 0.0001 0.0006 
√h5 0.0006 0.0010 0.0026 

 0.0001 0.0002 0.0015 
√h6 0.0004 0.0008 0.0015 

 0.0001 0.0002 0.0011 
√h7 0.0002 0.0003 0.0000 

 0.0001 0.0001 0.0000 
√h8 0.0009 0.0012 0.0017 

 0.0003 0.0005 0.0010 
√h9 0.0022 0.0027 0.0036 

 0.0007 0.0010 0.0021 
√h10 0.0021 0.0024 0.0036 

 0.0005 0.0006 0.0017 
√h11 0.0023 0.0023 0.0033 

 0.0005 0.0005 0.0011 
√h12 0.0027 0.0024 0.0033 

 0.0005 0.0004 0.0006 
√h13 0.0046 0.0052 0.0069 

 0.0011 0.0013 0.0016 
√h14 0.0091 0.0098 0.0089 

 0.0011 0.0014 0.0009 
√h15 0.1333 0.1285 0.1195 

 0.0059 0.0052 0.0041 
  

LogL 26 319.33 28 331.25 29 712.18 
AIC -120.9164 -130.1437 -136.4698 
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Table 4.  
Estimates from CIR Model for GOJ Bond Yields: 9/24/2004 to 7/28/2006 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 One Factor 
Model

Two Factor 
Model

Three Factor 
Model 

  
λ1 -0.8177 -0.7042 -0.0969 
 (0.0026) (0.0145) (0.4332) 
λ2 -0.8206 -0.4453 
  (0.0074) (0.0344) 
λ3 -0.5964 
   (0.0460) 
θ1 0.0000 -0.0002 -0.0015 
 (0.0000) (<0.0001) (0.0032) 
θ2 0.0002 -0.0002 
  (<0.0001) (0.0004) 
θ3 0.0022 
   (0.0006) 
κ1 0.7810 0.4859 0.2025 
 (0.0013) (0.0180) (0.4355) 
κ2 0.5861 0.5156 
  (0.0161) (0.0419) 
κ3 0.6666 
   (0.0557) 
σ1 0.0017 0.0012 0.0001 
 (0.0003) (<0.0001) (<0.0001) 
σ2 0.0012 0.0006 
  (<0.0001) (0.0003) 
σ3 0.0005 

   (0.0001) 
√h1 0.0050 0.0068 0.0373 

 0.0003 0.0010 0.0335 
√h2 0.0043 0.0023 0.0171 

 0.0003 0.0001 0.0123 
√h3 0.0030 0.0051 0.0061 

 0.0003 0.0013 0.0026 
√h4 0.0023 0.0027 0.0023 

 -0.0004 0.0007 0.0007 
√h5 0.0020 0.0026 0.0005 

 0.0007 0.0008 -0.0003 
√h6 0.0012 0.0015 0.0003 

 0.0004 0.0002 0.0001 
√h7 0.0006 0.0012 0.0001 

 0.0001 0.0002 0.0001 
√h8 0.0332 0.0012 0.0007 

 0.0228 0.0003 0.0002 
√h9 0.0039 0.0016 0.0015 

 0.0018 0.0004 0.0005 
√h10 0.0038 0.0015 0.0012 

 0.0017 0.0002 0.0001 
√h11 0.0034 0.0016 0.0020 

 0.0012 0.0004 0.0002 
√h12 0.0033 0.0010 0.1165 

 0.0009 0.0002 0.0669 
√h13 0.0056 0.0086 0.0138 

 0.0016 0.0018 0.0100 
√h14 0.0106 0.0178 0.0241 

 0.0015 0.0028 0.0109 
√h15 0.1437 0.1450 0.1325 

 0.0072 0.0120 0.0064 
  

LogL 25 531.71 26 068.27 24 076.15 
AIC -117.2952 -119.7392 -110.557 
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Two of the 15 estimated standard deviation parameters for the measurement errors tend to zero as the 

number of factors increase. The smallest standard deviations for measurement equation in the CIR models 

are 6 and 1 basis points for the 5-year bond rate in the one- and three-factor models, respectively, and 10 

basis points for the 10-year bond in the two-factor model. The largest standard deviations are 1 437, 1 450 

and 1 325 basis points for the 30-year bond rate in the one-, two- and three-factor models, respectively. 

Similar to the Vasicek models, these values are significantly larger compared to the relatively low 

standard deviations for the remaining bond rates. Hence, aside from the 30-year yield, the factors explain 

most of the yield fluctuations in the CIR models suggesting that the 30-year yield fluctuation is not 

adequately explained by the CIR model.  

 

The time series evolution of the combined factors of the two-factor CIR model are compared with the 

evolutions of the 3-month to 20-year bond yields (see Figure 1). The combined factors are strongly 

correlated with these yields suggesting that monetary policy influences these yields. The correlation 

coefficients between the combined factors of the two-factor CIR model and GOJ yields range from 94.0 

per cent to 100.0 per cent for the 3-month to 15-year yields and 82.0 per cent for the 20-year yield. The 

correlation between the combined factors and the 30-year yield was significantly lower with a value of 

44.0 per cent (see Figure 2). The Kalman filter one-step ahead predicted yields and the actual yields for 

the two-factor CIR model are illustrated in Figure 3. The Kalman filter algorithm display accurate 

forecasting ability, particularly for the 4-year to 10-year GOJ maturity yields. 

Figure 1. Evolution of Combined Factors of 2-Factor CIR Model  
and the 3-month to 20-year maturities  
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Figure 2. Evolution of Combined Factors of 2-Factor CIR Model  
and the 30-year maturity 
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4.3  Factor Loadings 

The factor loadings as a function of maturity presented in this section is based on the estimated 

parameters of the measurement equation in the one- and two-factor CIR models (see Figures 4 and 5). 

The factor loadings are derived using the coefficients of ( )B T  as expressed in equation (26). The term 

structure of zero yields can be one of three possible shapes. If the short rate, r , is less than ( )Y ∞ , then 

shape is monotonically increasing. It is monotonically decreasing or �humped� when ( )r Y> ∞ .  

 

As given by equation (14) the sum of all factors in a multi-factor term structure model is equal to the level 

of the instantaneous short rate. The coefficients on the factor of the one-factor model and the 1st factor of 

the two-factor model display the same pattern of rapid decline as the time to maturity increases, indicating 

a strong impact for the short-term rates. Specifically, these factor loadings display steep declines between 

0 and 2.5 years. The declines become less steep as the time to maturity increases to around 20 years and 

level off at very low levels for the remaining maturities. These factors could represent �level� factors.20 

The 2nd factor loading of the two-factor model exhibits a steep increase for short-term rates between 0 and 

5 years which diminishes as the time to maturity increases  to around 20 years and levels off for the 

remaining maturities. This factor could represent the �steepness� factor corresponding to the slope of the 

yield curve. 

                                                 
20 See Litterman and Scheinkman (1991). 
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Figure 3. Actual and Predicted GOJ Yields 

 

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead THREEMONTH

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead SIXMONTH

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead ONEYEAR

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead TWOYEAR

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

.20

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead THREEYEAR

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

.20

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead FOURYEAR

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

.20

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead FIVEYEAR

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

.20

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead SIXYEAR

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

.20

.22

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead SEVENYEAR

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

.20

.22

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead EIGHTYEAR

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

.20

.22

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead NINEYEAR

-3

-2

-1

0

1

2

3

.10

.12

.14

.16

.18

.20

.22

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead TENYEAR

-3

-2

-1

0

1

2

3

.08

.12

.16

.20

.24

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead FIFTEENYEAR

-3

-2

-1

0

1

2

3

.08

.12

.16

.20

.24

.28

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead TWENTYYEAR

-3

-2

-1

0

1

2

3

.0

.2

.4

.6

.8

50 100 150 200 250 300 350 400

Std. Residuals Actual Predicted

One-step-ahead THIRTYYEAR

 

 

 

 



 24

 

 

 

Figure 4. Factor Loading of One-Factor CIR Model 
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Figure 5. Factor Loadings of Two-Factor CIR Model 
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5.0  Conclusion 

In this paper single- and multi-factor version of the Vasicek and CIR models of the term structure of 

interest rates were estimated using a state space formulation. This approach combines both cross-section 

and time series information based on a system of bond price equations to generate estimates of 

unobservable state variables that drive the term structure. The models are estimated for up to three factors 

using a quasi-maximum-likelihood estimator with a Kalman filter. Fifteen bond maturities were used 

comprising the 0.25-, 0.5-, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 15-, 20- and 30-year computed zero-coupon 

GOJ bond yields covering the period 24 September 2004 to 28 July 2006 to estimate the parameters of 

each model. 

 

Based on the empirical results, the Vasicek models performed very poorly relative to the CIR models. 

Additionally, the results suggested that the 2-factor CIR model provided the best representation of the 

dynamics of the yield curve. Based on the factor loadings, extracted factors of the two-factor model 

correspond with the general level and slope of interest rates, respectively. The empirical analysis for the 

2-factor model revealed that the level of the short rate exhibited strong and smooth mean reversion and 

indicated the existence of a large and significant risk premium that increases with time to maturity. The 

values of the parameter estimates for the long-term average rate are all virtually zero. However, this is 

probably a result of the sample period under analysis. That is, the period corresponds to a consistent series 

of downward adjustments to Bank of Jamaica repurchase rates following a substantial upward adjustment 

of over 15 000 basis points during an episode of substantial foreign exchange market instability in 2003. 

The strong reversal of the short rate since 2003 could explain the dominant expectations of investors for 

considerable loosening of monetary policy being reflected in the estimated long-term average rate. 
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A summary of the key findings of this study, based on significant estimates from two-factor CIR model, 

are: 

!!!!    The short-rate (influenced by monetary policy) exhibits rapid decline between 0 and 2.5 years which 

become less steep as the time to maturity increases to around 20 years and levels off to a very low 

level for the remaining bond maturities 

!!!!    Risk premium parameters have large negative values, indicating the existence of a large and positive 

risk premia for the �level and �steepness� factors that increases with the time to maturity of GOJ 

bonds 

!!!!    Long-run average yield parameters reveal that investors were expecting lower interest rates over the 

sample period 

!!!!    Mean reversions for the �level� and �steepness� factors that drive the dynamics of GOJ yields are 

relatively fast and smooth indicating relatively short-lives for monetary shocks 

!!!!    The �level� and �steepness� factors explain variations primarily at the short end of the yield curve 

!!!!    The Kalman filter algorithm display accurate forecasting ability, particularly for the 4-year to 10-year 

GOJ maturity yields. 

 

Similar to traditional research on the term structure, this study examined a �yields-only� latent-factor 

model of the dynamics of the yield curve. Recent studies in the literature have focused on uncovering the 

relationship between term structure models and specific macroeconomic variables. Future research will 

explicitly incorporate the relationship between term structure latent factors and macroeconomic variables 

of interest in the Jamaica case. For example, based on estimated factor loadings, this study concluded that 

the unobserved short rate (related to the BOJ policy rate) has a significant impact on the short end of the 

yield curve and a relatively minimal impact on the long end. Relevant observable macroeconomic 

variables that could be jointly incorporated with latent state variables in a state-space model of the term 
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structure include monetary aggregates, the expected inflation gap, the expected output gap, foreign 

interest rates, as well as the fiscal deficit to account for yield movements at the long end. 21  

 

Policy Recommendations 

Modelling the term structure of interest rates (or the yield curve) is critical to explaining the behaviour of 

interest rates. The information derived from this process play vital roles in both policy formulation and 

financial market activities. Specifically, as mentioned in the introduction, understanding interest rate 

dynamics is important to monetary and debt management policies, as well as, the pricing of interest rate 

derivatives. The policy recommendations provided in this paper, however, are related primarily to 

monetary policy. 

 

The study finds evidence that supports the usefulness of term structure models for monetary policy. 

Presently, the Bank of Jamaica infers market perception about the future path of interest rates by using 

information from the movements in monetary aggregates, infrequent auctions of mainly short-maturity 

bonds, as well as market intelligence via informal surveys. However, the estimation of interest rate term 

structure models would provide a more useful guide for the conduct of monetary policy. For instance, the 

slope of the term structure can be used for measurement of expected inflation and the prediction of GDP 

growth. That is, the slope of the yield curve reflects investors� perception with regard to the future path of 

short-term interest rates.  

 

Results from this study reveal that the Kalman filter algorithm provides accurate forecasts of investor 

expectations regarding future short rates. The Bank can also influence the slope of the yield curve by 

changing the level of the short rate relative to the long rate. If the slope is positive and steep, this implies 

that inflation is expected to accelerate and vice versa. Of course, estimates on the �market price of risk� 

obtained from term structure models will allow the monetary authorities to purge the slope estimate of the 

                                                 
21 See, for example, Rudebusch and Wu (2003) for an application of a �macro-finance� term structure model to US 
Treasury yields. 
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GOJ credit risk and term premia. Future business cycles may also be predicted by the Bank given 

information provided by the slope estimates of term structure models. For example, a wealth of evidence 

exists in the literatures which find that yield curves accurately forecast the turning points of business 

cycles. In particular, negatively-sloped yield curves usually occur around business cycle peaks.22 

 

The estimation results from the state-space model of GOJ term strucure should also be incorporated in the 

macro-econometric model of the Jamaican economy employed by the Bank to examine the monetary 

transmission mechanism. Specifically, including equations depicting interest rate term-structure 

relationships should improve the accuracy of inflation forecasts and, hence, the efficacy of monetary 

policy. The addition of expectations model-based term structure equations to this model would be 

specified to ensure that the five-year rate, for example, would move to equate with a series of annual 

investments at the expected one-year rate over the five years plus the estimated premia. 

 

Finally, the Bank (as a GOJ bond issue agent) should partner with the GOJ to establish an accurate and 

reliable benchmark yield curve through the regular issue of GOJ bonds at standardized maturities along 

the entire yield curve. This will greatly benefit liquidity conditions as well as the price discovery process, 

for improved monetary and fiscal policy formulation, as well as more accurate pricing of risky bonds and 

hedging instruments at varying maturities. The Bank has already begun to assist in the development of a 

benchmark yield curve given current efforts to establish a central securities depository within a modern 

and efficient payment and securities settlement infrastructure. 

 

 

 

 

 

 

                                                 
22 See Estrella and Trubin (2006). 
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