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TIME -VARYING VOLATILITY: A MULTI-VARIATE APPROACH

Abstract: A vector error correction process with a multivariate GARCH variance
structure is used to model stock returns on the Jamaica Stock Exchange.
Structural restrictions are used to identify the estimated cointegration space.
The results indicate long run relationships between the stock price and the
treasury bill rate, and among traded volume, stock price and the real exchange
rate.

Qutline

Thig paper summarizes a procedure for analyzing relationships
between stock returns and other macroeconomic wvariables. Typical
egstimates of wvolatility assume that the appropriate conditioning
set for the mean function is a low order auto regression. On the
other hand, the variance function has been augmented to include the
effects of mixing variables like traded volume. Karpoff (1987)
guggests that volume may be simultaneously determined with the
price index of equities. To the extent that volume is an
endogenous variable, its treatment as a pre-determined or exogenous
variable can generate estimation biases.

The approach followed here assumes that there exists a vector of
endogenous variables that exhibits common long run tendencies. 1In
particular, we argue that the return on cowmmon stock is related to
the return on short term treasury bills (term structure), the rate
of inflation and changes in the exchange rate and traded volume.
We assume that the levels potentially contain common trends that

may not appear in short run dynamic influences.

The appropriate methodology for analyzing such a system is the
Vector Error Correction Model (VECM). We consider the system



where Zt is a p x 1 vector of stochastic variables with the first
k observations treated as fixed. We can reparameterize the system
as a VECM (Johansen (1988))

DZ, = BDZ, 4y +......... + BDZ, o, + 0f'Z ., + J + & -

where o and § are p x r matrices.

The first decision parameter relates to the choice of lag length of
the Vector Autoregression (VAR) and the choice of deterministic
components in the system. In our case, graphical plots and
autocorrelation plots suggest that extreme classifications of no
deterministic components or quadratic trends in the data can be
eliminated from further analysis. The lag length chosen was the
minimum lag that generated a system error structure that did not
exhibit serial correlation. For the monthly Jamaican series of
interest, five lags are sufficient. Conditional on that maximum
lag length, the system is tested for the number of common trends or
colntegrating relationships that exist among the five wvariables.
The basic principle employed follows Pantula (1989) whereby
alternative models under consideration are sequentially tested
starting from the most restricted wmodel and lowest cointegrating
rank. In addition, tests for exclusion of individual wvariables,
tests for stationarity of individual variables conditional on an
estimated cointegrated space, and tests for weak exogeneity of
individual variables are conducted as preliminary indications of

systemic structure.

Our preliminary tests suggested a gystem with at most two
colntegrating relationships or three common trends in a model that
contains linear trends in the data and an intercept for the

cointegrating relationships. The system was then estimated using

2



the Johansen procedure to identify both the cointegrating vectors

and the short run dynamic parameters. Given that the colntegrating

gpace is not uniquely determined we proceed through the imposition
of subset restrictions on the colntegrating relations to identify
The

matrix of cointegrating vectors and adjustment factors is shown
below:

structural relationghips within that cointegrated space.

BETA
LSP LTB LVOL LCP LXH
-1.99 6.77 0.66 -0.40 0.38
-0.85 -1.15 0.92 -3.05 3.87
0.29 1.72 0.56 3.82 -6.12
-1.15 ~0.94 0.10 1.55 -0.02
-1.02 -2.25 0.06 3.30 -0.18
ALPHA
LSP LTB LVOL | LCP LXH
0.02 ~0.01 | -0.003 0.001 0.002
-0.015 | -0.002 | -0.002 | 0.002 0.002
-0.07 ~0.18 -0.06 -0.05 0.002
0.001 0.002 0.00 -0.001 0.00
~0.002 | -0.006 0.01 ~0.001 | 0.001

has the following t-values:

T-VALUES FOR ALPHA MATRIX

DLSP ~4.45 2.68
DLTB 4.69 0.68
DLVOL 1.37 3.46

Normalizing the two cointegrating vectors, our reduced alpha matrix




DLCP -0.99 ~2.63

DLXH 0.57 1.95

The beta and alpha matrices suggested hypotheses on structural
relationships and weak exogeneity for the system. In particular,
the likelihood ratio test failed to reject (p-value = 0.63) the
null hypothesis of weak exogeneity for LXH. Conditional on LXH
being weakly exogenous, the re-estimated partial system did not
reject (p-value = 0.81) the structural hypotheses indicated in the
beta matrix below:

BETA
LSP LTB LVOL LCP LXH
1.00 -4.58 0.00 0.00 0.00 ﬁ
-0.78 0.00 1.00 -1.28¢6 1.286

T-VALUES FOR ALPHA MATRIX

[oLe> | -2.86 |o0.03
DLTB 4.58 ~3.08
DLVOL, 1.06 -3.80
DLCP -0.96 | 2.96

The corresponding t-values for the alpha matrix indicate that the
first cointegrating vector which 1links the stock return with
changes in the treasury bill rate enters both the stock return and
treasury bill error correction equations. The second cointegrating
relationship, which posits positive relationships between volume
traded and both stock price and the real exchange rate, enters the

treasury bill, volume and inflation exrror correcting equations.

The short run matrices indicate the following structure:



DLSP = f(DLSP,,, DLTB,,, DLTB,,, DLTE,.,)

DLTB =f (DLSP,.,, DLTB..,, DLVOL, ., DLCP.,, DLTB.., DLTB,,)
DLVOL =

f (DLSP,.,, DLVOL,.,, DLVOL,,, DLVOL, )

DLCP = f(DLCP..,, DLTB,.,, DLXH, DLXH,,, DLXH, )

The correlation matrix of the residuals suggest a diagonal form:
RESIDUAL CORRELATION MATRIX

DLSP DLTR DLVOL DLCP
1.00

-0.03 1.00

0.12 -0.02 1.00

0.01 ~0.16__Hg.04 1.00

The system tests for the null hypothesis of no autocorrelation are
not rejected for one 0.44) (p-value =
0.93). The individual equation tests for normality and a system
counterpart rejects the null hypothesis. In each case there is
excess kurtosis and the stock return and treasury bill equations
both fail ARCH tests for heteroscedasticity.

{p-value = and four lags

The eigenvalues of
the companion matrix indicate three values near the unit circle
supporting the hypothesis
the indicate
stationarity and a plot of the log likelihood wvalues lies within

the two standard error bands, suggesting constancy.

of two cointegrating vectors. In

addition, plots of cointegrating <relations

Given the above residual diagnostics, the identified structural
gystem 18 estimated with a multivariate GARCH structure with a

diagonal covariance matrix imposed a priori.
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Actual and Fitted for DLTB
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Actual and Fitted for DLVOL.
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Actual and Fitted for DLCP . Histogram of Standardized Residuals
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