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Hurricanes cause considerable losses in the Caribbean and have been shown to 

be detrimental to economic growth. We investigate the extent to which natural 

catastrophe risk can be diversified across Caribbean countries in a common 

pool, and thus the advantages of entering a cross-country risk insurance 

scheme like the Caribbean Catastrophe Risk Facility. To this end we use over 

150 years of historical hurricane track data and a loss estimation model for 

Caribbean islands to produce a distribution of losses in the region. As the 

hurricane losses are rare events with heavy tails, we model their dependence 

across islands by experimenting with various multivariate peaks over threshold 

(POT) models, identifying their di_erences. The results are then used to 

evaluate the risk contributions of each of the countries to the overall risk of the 

pool, and to asses the role that model uncertainty can play in pricing 

catastrophe risk. 



1 Objectives

Extreme climate has resulted in nearly US$3 trillion worth of damages globally over

the last 35 years.1 Worryingly, not only are developing economies the most geograph-

ically exposed to these events, but they are also much less resilient to the subsequent

losses, having little reserve funds, limited disaster preparation, and scarce access to

insurance markets. As a response, a number of cross-country insurance schemes

have been introduced to allow countries within certain regions to pool their risk and

hence lower the cost of insurance coverage, such the Caribbean Catastrophe Risk

Insurance Facility (CCRIF) and the African Risk Capacity (ARC). Despite the gen-

eral enthusiasm regarding these products and plans to introduce new ones2, such as

the Pacific Catastrophe Risk Assessment and Financing Initiative (PCRAFI), there

appears to be little reliable quantitative understanding as to their actual potential

for diversification of risk.

In this paper we analyze the extent to which natural catastrophe risk is diversifiable

across countries or systemic. To this end we use hurricane losses across islands in the

Caribbean. Employing analytical tools from the systemic risk literature, we further

evaluate the contribution of each island to the pooled risk of the Caribbean. This

calculation could form the basis for setting a premium for each country. Finally,

by considering different models of the cross-island dependence of hurricane risk, we

empirically assess the possible role that model risk can play in the evaluation of the

hurricane risk pooled across the region, in the calculation of insurance premia, and

on the pricing of a cat bond written on the risk of the pool.

Arguably, losses due to hurricanes in the Caribbean present an ideal case study

for the task at hand. More specifically, the region is subject on average to about

six hurricane strength storms per year, and these can cause considerable losses due

to their strong winds, storm surge, and associated excessive rainfall. Importantly,

1See e.g. World Bank (2013)
2See e.g. World Bank (2014)
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the small island economies in the Caribbean are particularly vulnerable to such

large natural shocks due to their small physical size, geographic isolation, limited

natural resources, rapid population growth, high population densities, low economic

diversification, and poorly developed infrastructure, and thus would find it expensive

to insure against these.3 At the same time, the islands are spread across a large

enough spatial area so that the correlation of losses due to hurricanes is likely to be

far from perfect.

Among the requisites of an ideally insurable risk, Schmit (1986) lists having a

large number of homogeneous exposure units, independence among them, and the

avoidance of catastrophic potential. In this paper we empirically analyze the risks

of hurricane destruction in the Caribbean, which violate all three of these requi-

sites: there are only 31 island groups (16 that joined the CCRIF), which are not

homogeneous in size nor exposure; the risk is dependent across islands; and more-

over the risk is catastrophic, in that events are rare and extreme, and are best

described by a distribution with fat tails. The extent to which natural disaster

risk can be diversified across a pool is the subject of an ongoing discussion in the

literature, see, e.g., Froot (2001) who analyzes potential reasons for the failure of

insurance markets in the presence of catastrophe risk. For instance in the case of

crop insurance, Miranda & Glauber (1997) argue that systemic weather risk induces

dependence and can cause crop insurance markets to fail, whereas in a framework

with Gaussian risks, Wang & Zhang (2003) argue that the spatial correlation is not

strong enough for such a failure. Duncan & Myers (2000) show how catastrophic

risk increases the cost and coverage of crop insurance and can lead to a complete

breakdown of the market. More recently, Ibragimov, Jaffee & Walden (2009) show

that when independent catastrophic risks have heavy left tails, such as arise under,

e.g., power law distributions, insurance markets might fall into a “nondiversification

trap”, where insurance providers choose not to offer insurance and not to participate

3See Meheux, Dominey & Lloyd (2007).
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in reinsurance, even though there is sufficient capacity in the market for full risk

sharing.

In this study our first objective is to evaluate how systemic hurricane risk is and

whether there is scope for diversification. Obviously, for an investor or insurer with

infinitely deep pockets, there is no risk that is systemic. To assess whether risk is

diversifiable, one needs to evaluate the capital buffer that is required to cover the

risk with a large enough probability. There are many different insurance principles

that can be used to compute a premium or a risk contribution, but the most relevant

in our context are Value-at-Risk (VaR) and expected shortfall (ES). More precisely,

VaR is the quantile of the loss distribution for a low enough threshold probability,

and as such, it can be linked to the size of the capital buffer that is required to avoid

bankruptcy in case of extreme losses, much in the same way as banks’ regulatory

capital charges depend on the VaR of their portfolio of assets. In contrast, expected

shortfall is a tail expectation, which measures the expected loss conditional on a

loss in excess of the VaR.

Our second objective is to evaluate the contribution of each country to the overall

risk of a pool of all countries. From the analytical point of view, this question can

be answered using methodology proposed recently in the systemic risk literature

(for a recent review of this literature, see, e.g., Bisias & Valavanis 2012, Benoit,

Colliard, Hurlin & Pérignon 2017). The most prominent examples are the condi-

tional Value-at-Risk (CoVar), proposed by Adrian & Brunnermeier (2016), systemic

expected shortfall (SES) and marginal expected shortfall (MES) of Acharya, Ped-

ersen, Philippon & Richardson (2017), and SRISK introduced by Acharya, Engle &

Richardson (2012) and Brownlees & Engle (2017). These methods all rely on esti-

mating either the quantile of one contributor, conditional on an extreme aggregate

event, to measure how sensitive a contributor is to aggregate risk, or the quantile of

the aggregate conditional on an extreme event of each contributor.

Finally, we want to assess the importance of model risk in evaluating the scope for
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diversification of hurricane damage. This will also give an insight into the pricing of

cat bonds, which requires as an input the multivariate distribution of damages across

countries. The issue of parameter uncertainty for cat bonds was first considered in

a simulation study by Froot & Posner (2002), who find that the sensitivity of the

pricing of catastrophe risk to parameter uncertainty is not very large. In contrast,

Woodard, Paulson, Vedenov & Power (2011) show how the choice of copula can

strongly influence risk analysis for crop insurance. In our setup, model risk stems

from the uncertainty about the right dependence model. Different models of de-

pendence will lead to different ways of pricing catastrophe risk, which should lower

the valuation of such risks for an ambiguity-averse investor (see, e.g., Kunreuther,

Meszaros, Hogarth & Spranca 1995). Our aim here is to estimate a joint distribu-

tion of losses due to hurricanes for all countries in the Caribbean. To this end we

use a peaks over threshold (POT) model for the distribution of losses in any given

country, and copulas to build a joint distribution for these losses. From the method-

ological point of view this is a multivariate extension of the approach used by Longin

& Solnik (2001) to model pairs of stock index returns, which relied on statistical

methodology by Ledford & Tawn (1996). The extension from the bivariate to the

large-dimensional multivariate case, however, is not an easy step. In particular, it

opens the way to a large number of different possible models, all of which might

suffer from misspecification. This underlying uncertainty about the correct model

can introduce severe model risk, and we will evaluate this explicitly.

2 Methodology and research design

2.1 Risk premium

While there are a number of measures that can be used to assess risks, and the

amount of risk reduction that diversification affords, we rely on value-at-risk (VaR)
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and expected shortfall (ES), also called conditional VaR (CVaR). Classical princi-

ples for calculating risk premia include the fair premium, which corresponds to the

expected loss, and the standard deviation (variance) principle, where a linear func-

tion of the standard deviation (variance) is added to the fair premium; see Brillinger

(1993) for a discussion in the context of earthquake insurance, and Grossi & Kun-

reuther (2005) for a general discussion of risk premium calculation for catastrophe

insurance.4 Some of these alternative ways of assessing risks can be problematic,

for instance in the case of risks with fat tails, where even low order moments, such

as the average, the standard deviation or the expected utility under the loss might

not be defined.5

For a threshold probability α, V aRα is defined as the α-quantile of the risk dis-

tribution: P (L ≥ V aRα) = α. As shown by Gouriéroux, Laurent & Scaillet (2000),

the sensitivity of the VaR of a portfolio L =
∑

iwiLi of individual losses Li to the

portfolio weight wi, of risk i (which, in our case, is 1) can be computed as follows:

∂V aRα

∂wi
= E[Li|L = V aRα]. (1)

Given that VaR is homogeneous of degree one in portfolio weights, using Euler’s

theorem one can decompose the VaR of a portfolio into the contributions of each

constituent to the overall VaR, as follows (see e.g. Hallerbach 2002):

V aRα =
∑
i

E[Li|L = V aRα]. (2)

A similar exercise can be done with ES, which is defined as the expected loss,

4VaR has been used in the context of crop insurance by e.g. Wang & Zhang (2003) in the U.S.,
and more recently by Shen, Okhrin & Odening (2016) in China.

5Alternatively, the actuarial literature also uses the probability of ruin as a way of determining
premia (for a discussion of different principles for the calculation of risk premia in the actuarial
literature, see, e.g., Kaas, Goovaerts, Dhanene & Denuit 2008) or premia can also be computed by
specifying preferences and using an expected utility framework, such as with a CRRA assumption.
For an example of preference-based flood insurance premia calculations in the Netherlands, see
Paudel, Botzen & Aerts (2013).
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conditional on a VaR exceedance: ESα = E[L|L ≥ V aRα]. As shown in Gouriéroux

et al. (2000), and in Acharya et al. (2017), the ES of a portfolio of individual losses

Li can be decomposed as follows:

ESα = E[L|L ≥ V aRα] =
∑
i

E[Li|L ≥ V aRα], (3)

where the Marginal Expected Shortfall (MES) is the sensitivity of the portfolio ES

to the weight, wi of risk i:

MESα =
∂ESα
∂wi

= E[Li|L ≥ V aRα]. (4)

As is well-known, ES presents the advantage over VaR that it is a coherent mea-

sure, since, unlike VaR, it is sub-additive, which means that the sum of the ES of

two portfolios of risks is necessarily greater than the ES of the combined portfolios

(see Artzner, Delbaen, Eber & Heath 1999). Moreover, MES, the contribution to

the portfolio ES is much easier to compute and analyze than the contribution to

the portfolio VaR, since the former conditions on an event that can be observed

(L ≥ V aRα), while the latter conditions on a null-event (L = V aRα), see Mainik

& Schaanning (2014). Our approach is close to that of Huang, Zhou & Zhu (2012),

who compute individual banks’ marginal contribution to a systemic risk indicator

measured by the price of insurance against systemic financial distress. We will com-

pute the contributions to overall VaR and ES by simulation under the different joint

distributions of hurricane losses we will estimate; see, e.g., Glasserman (2005), who

devises efficient simulation methods for the calculation of risk contributions in a

credit risk setting, based on importance sampling.

To assess the scope for diversification, we can compare the VaR and ES of the

pool to the sum of VaR and ES of each of the countries in the pool: V aRα(L)∑
i V aR(Li)

and

ESα(L)∑
i ES(Li)

. Likewise, we can evaluate the benefits of each country from joining the

pool by comparing their risk measures to their contribution to the risk measure of
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the pool: E[Li|L=V aRα]
V aR(Li)

and E[Li|L≥V aRα]
ES(Li)

.

2.2 Marginal model: peaks over thresholds (POT)

Before modelling the dependence between hurricane damage in the Caribbean, we

estimate marginal models for hurricane losses in each island in the Caribbean. It

is common practice to model the probabilities of relatively rare occurrences using

extreme value theory, see for instance Jagger & Elsner (2006) for hurricane wind

modeling. One result of Extreme Value Theory (EVT) is that there are three pos-

sible limit distributions for maxima of independent random variables: the Fréchet,

the Gumbel and the Weibull, which can all be cast within the Generalized Extreme

Value (GEV) family. Depending on the value of their exponent, they have finite

tails, exponential or power tails. A standard approach in this regard is the Peaks

Over Threshold (POT) model, based on the Pickands Balkema de Haan theorem,

which states that for a large class of distributions exceedances over a high thresh-

old m are well approximated by a Generalized Pareto Distribution (GPD), which

is characterized by a scale parameter σ and by a shape parameter ζ, whose value

corresponds to the tail parameter as the GEV.

We thus consider that for each territory i, the distribution of hurricane losses Li,

can be approximated as follows:

P (Li ≤ x) =


(1− Fi,n(mi))

(
1−

(
1 + ζ x−mi

σi

)−1/ζi
+

)
whenever x ≥ mi

Fi,n(mi) whenever x < mi,

(5)

where z+ = max(0, z), and Fn(x) = 1
n

∑
j 1{Lij≤x} is the empirical distribution,

based on the sample (Li1, . . . , Lin). A negative value of the shape parameter ζi

implies that the distribution has an upper bound of −1/ζi, while, when ζi = 0, the

distribution has a thin tail with exponential decay (like e.g. the normal distribution),
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and when ζi > 0, the distribution has a fat tail, with power decay (like, e.g., the

Student t).

2.3 Multivariate POT models

Since we are interested in the scope for insurance, it is important to take account

of the dependence in extremes that exists between the different islands/territories.

Insurance will work best when events across territories are independent or negatively

correlated. Copulas are the ideal tool to characterize the dependence between a

number of marginal distributions. They rely on the Sklar (1959) theorem, which

shows how a joint distribution can be decomposed into the product of the marginals

and a copula term that captures the dependence among them. Copulas have been

used in the context of systemic risk in contexts with a catastrophic component, see,

e.g., Goodwin & Hungerfors (2014) use copula to model the systemic risk in crop

insurance.

Our aim is to build a multivariate density of extreme losses for all the islands in

the Caribbean. We will consider a number of different parametric copula models to

join the individual POT models into a proper multivariate distribution of hurricane

losses:

2.3.1 Gaussian copula

This is the first and the simplest dependence model that comes to mind. Even

though, from a theoretical point of view, the Gaussian copula cannot obtain as an

extreme value distribution, it has been used for multivariate extreme value analysis

by Renard & Lang (2007). Padoan, Ribatet & Sisson (2010) also use a Gaussian

copula in a bivariate composite likelihood approach for spatial extremes. We can

estimate this copula under increasingly general assumptions: equicorrelation, where

the correlation between all islands is the same, with a factor structure, or an unre-
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stricted correlation matrix.

2.3.2 Student t copula

The multivariate Student t distribution generalizes the Gaussian. While it is possible

to entertain the same assumptions on the correlation as in the Gaussian case, the t

allows for dependence in the extremes in the form of tail dependence.

2.3.3 Gumbel copula (logistic model)

This is the classical “work horse” model in the case of bivariate extremes, but it is

more difficult to handle in a high-dimensional context. Tawn (1990) shows that in

its most general form, the d-dimensional multivariate asymmetric logistic (Gumbel)

distribution is a sum over all partitions, B of the set of indices (1, . . . , d). Stephen-

son (2009) proposes MCMC estimation methods of the (possibly) high-dimensional

asymmetric logistic model. Hofert, Mächler & McNeil (2012) show how to efficiently

evaluate a high-dimensional Gumbel copula.

2.3.4 Extreme-Value t copula

The multivariate EV-t copula of Demarta & McNeil (2005) is the theoretical extreme-

value limit of the Student t copula.

2.3.5 Vine copulas

Vine copulas decompose a joint distribution into a number of iteratively conditioned

bivariate copulas, according to a tree structure. The tremendous flexibility of vine

copulas rests on the fact that the tree structure and the bivariate copula building

blocks can be chosen arbitrarily and combined at will. This class of models is

very large, and seems like a promising avenue for modeling multivariate extremes.

Depending on the tree of conditioning, one obtains canonical vines (C-vines), which

are based on a pivot country (as in a factor model), the dependence of which is
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computed with all other countries, or a D-vine, where bivariate copulas are used

for dependence among neighboring countries, where countries are placed in a chain.

R-vines combine structures from both D-vines and C-vines. D-vines seem especially

suited to the structure of our island data, since their tree structure involves modeling

dependence between neighbors. They have been used, e.g., by Schulte & Schumann

(2015) to model spatial flooding in three locations.

2.3.6 Hierarchical Archimedean copulas

Hierarchical Archimedean copulas (HACs) imply equidependence inside and across

groups and are restricted to positive dependence. They are defined on a tree struc-

ture, and their specification and estimation has been discussed by Okhrin, Odening

& Xu (2013a). They were used in the context of insurance by Okhrin, Odening &

Xu (2013b).

3 Data description

3.1 Study Region

Our study group are the 31 Caribbean islands (groups) located in the North At-

lantic Basin. These include both politically independent islands as well as special

territories. As can be seen in Figure 1, the islands differ substantially in size and

are spread over a relatively wide geographic area.

3.2 Hurricane Data

Our hurricane data is taken from the HURDAT database. which is the most com-

prehensive database of all tropical cyclones in the Atlantic Ocean, Gulf of Mexico

and Caribbean Sea, since 1851 and provides, among other things, information on

the location of the storm center and maximum wind speed at 6 hourly intervals. To
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show the exposure of the region to hurricanes we depict all tropical storms over our

sample period, 1851-2014, that reached hurricane strength at least at some point

over their life time, in Figure 2. As can be seen, there have been a large number

of storms (893) that have traversed the region over the 161 year period. Clearly,

however, some islands were more exposed to storms than other. In order to derive

a distribution of losses for the islands we make the assumption that the probability

distribution that can be derived from the historical storms is stable over time and

thus can be seen as representative of the possible distribution of storms today and

the intermediate future.6 Each storm thus presents a possible realization from this

distribution and can be used to predict losses across islands given its characteristics.

3.3 Loss Estimation Model

To associate the possible losses that the hurricanes given in HURDAT would in-

duce per island if they were to happen today, we use CCRIF’s Second-Generation

Hazard and Loss Estimation Model (2G Model). Under this model, for any given

storm, first storm and site specific characteristics are used to calculate local (at a

30 arc-seconds cell size) winds and storm surge within islands in response to an

event. These are then translated into damages using local exposure data and dam-

age functions. Importantly, the exposure data consists of locally estimated asset

values at risk (also at 30 arc-seconds) and thus allows the generation of estimated

losses in monetary terms by considering asset exposure and explicit damage func-

tions.7 More precisely, for each 30 arc-second grid cell the number of dwelling units

is computed from population data, land cover information is used to infer construc-

tion types and non-residential exposure, and infrastructure is estimated using the

6There are of course concerns about hurricanes changing in frequency and intensity with climate
change; see Walsh, McBride, Klotzbach, Balachandran, Camargo, Holland, Knutson, Kossin, Lee,
Sobel & Sugi (2016). However, using synthetic tracks derived under different climate change
scenarios for the North Atlantic Basin, Emanuel (2011) shows that an increasing trend in damage
increase is unlikely to emerge before the next 40 to 70 years.

7The underlying data sources are remotely sensed land cover, distributed population estimates,
and national and sectoral economic data.
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density and distribution of building types, while the agricultural component in the

loss estimation is estimated using land cover data and agriculture’s contribution to

a country’s GDP. Each asset class (residential, non-residential, and infrastructure)

is then subject to a damage function associated with each type. Finally, all asset

losses are aggregated at the national level for each storm.

4 Preliminary Results and Expected output

4.1 Some preliminary results

We use the 893 tropical storms that traversed the Caribbean region over our sample

period as inputs into the the 2G Hazard and Loss Estimation Model described above.

Of these 579 produced positive losses across islands. Estimated total losses were on

average 224 million US dollars, with a standard deviation of 889 million. On average

each damaging storm affected about 3 islands (standard deviation of 3), with one

storm affecting up to 22 islands.

We also investigate the risk profile of individual islands by estimating univariate

POT models. To this end, we first determine the threshold above which a loss is

considered as extreme. To do so, we follow standard practice and examine mean

residual plots, where the different thresholds are plotted against the empirical es-

timates of tail expectations.8 Given that there are only relatively few hurricane

events, we set the threshold in such a way that we only leave out very small losses.

This is roughly in agreement with the MRL plots shown in Figures A.1 to A.3 in Ap-

pendix A, which look reasonably linear from the very start. Using these thresholds

we next estimated the univariate POT models, the estimates of which are displayed

in Table 2. The results show that both hurricane series in most countries have pos-

8The idea underlying the use of the MRL plot is to find the threshold after which the plot is
linear. This is because the tail expectation of a GPD is linear in the threshold, i.e., E[Y −m1|Y >
m1] = E[Y −m0|Y > m0] +m1

ζ
1−ζ where Y ∼ GDP (m0, σ0, ζ), and m1 > m0 are thresholds.
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itive, although not always significant, shape parameters, which indicates that the

hurricane impact series have power tails, which decay slowly, implying that there is a

non-negligible probability of extreme events. This is confirmed also by the convexity

of the return plots for hurricane shown in Figures 3 to 5.

As a first step, before estimating the multivariate POT models, we investigate

the correlation of risk across islands by simply calculating the pairwise dependence

between the hurricane losses in the different islands. More specifically, Figure 6

displays the correlation matrix of the cumulative density functions, also known as

probability integral (PIT), derived from the marginal POT models. These are the

inputs into the multivariate copula model. Using a variant of k-nearest neighbor

method, the series have been ordered in such a way that more correlated territo-

ries closer to each other. This highlights the underlying dependence structure in

the data. As can be seen, some islands have very strong positive dependence, in

particularly those that are geographically close. For instance, unsurprisingly, losses

in Haiti are strongly positively correlated with those in the Dominican Republic,

Jamaica, and Cuba. At the same time, there also exist negative correlation between

some pairs of islands, hence scope for diversification. For instance, losses from hur-

ricanes in Trinidad and Tobago, which is the most southern of the islands in the

Caribbean, are negatively correlated with most other islands in the region, except

for those geographically close, like some islands in the Eastern Caribbean. Neverthe-

less, distance is not a perfect predictor of correlation, as hurricanes often travel far

distances across the Caribbean. For example, despite being nearly 2000 km away,

Trinidad and Tobago’s losses are positively correlated with those of Jamaica. These

few examples readily demonstrate the complex nature of the nature of correlation

of hurricane losses across the region.

We have already run some of the dependence models, for instance a hierarchical

Archimedean copula (HAC) based on the Gumbel copula. We estimate the optimal

structure of the dependence tree and the copula parameters as shown in Okhrin
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et al. (2013a). The structure of the dependence tree and the pairwise rank corre-

lations are shown in Figure 7. Without any prior information about the geography

of the islands, the HAC copula model divides the country into the that are the

most homogeneous. Unfortunately, the HAC construction cannot handle negative

dependence, and as such it is not capable of capturing the negative dependence that

might be present between some countries, and which is beneficial in terms of risk

mitigation.

4.2 Expected output and tables

We will estimate all the different copulas we mentioned above, and possibly some

alternative ones. The output of these will result in a set of tables, although these

will not be the main interest of the paper per se. The model estimates will then

be used to compute the risk contributions of different country pools. The results of

this exercise we will result in several tables such as Table 3, which lists overall VaR

and ES for different pools of countries, as well as the risk reduction from pooling,

under the different copula models. We will also produce an number tables like Table

4, which lists the risk contributions to VaR and ES of the different countries under

the different dependence models.
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5 Timeline of delivery

Table 1: Timeline

Completion date Task

Completed Process historical hurricane data and run Loss Estimation Model

Completed Estimate Univariate POT models

September 2017 Estimate a number of different copula models. Check which ones
are most suitable for large dimension

November 2017 Simulate from the models to estimate contributions to overall risk

February 2018 Define scenarios for different pool compositions

June 2018 First Draft of Paper

October 2018 Final Draft of Paper
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Figure 1: Caribbean Islands

Figure 2: Hurricanes in the Caribbean, 1851-2012

22



Figure 3: Return plots of peaks over threshold (POT) models, 1/3
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Figure 4: Return plots of peaks over threshold (POT) models, 2/3
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Figure 5: Return plots of peaks over threshold (POT) models, 3/3
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Figure 6: Dependence between all territories in the Caribbean
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This figure displays the correlation matrix of the cumulative density functions derived from

the marginal POT models. This assists in detecting the underlying dependence structure

in the data. Using a variant of k-nearest neighbor method, the series have been ordered

in such a way that more correlated territories closer to each other.
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Table 3: Pooled risk with different dependence models

Dependence model Panel A: Overall risk measures

Value-at-Risk Expected shortfall

East West CCRIF All East West CCRIF All

Gaussian
Student t
Extreme value Student t
Hierachical Archimedean
Vine copula
etc.

Panel B: Ratio of pooled to sum of individual

Value-at-Risk Expected shortfall

East West CCRIF All East West CCRIF All

Gaussian
Student t
Extreme value Student t
Hierachical Archimedean
Vine copula
etc.

This table shows the Value-at-Risk and Expected Shortfall under different de-
pendence models for 4 different pools of countries: (1) countries in the Eastern
Caribbean; (2) countries i the Western Caribbean; (3) current members of the
CCRIF cross-country insurance scheme; (4) All countries of the Caribbean. Panel
A shows the value of the pooled risk measures, while Panel B contains the ratio of
the pooled value to the sum of the risk measures of te individual countries.
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Appendices

A Peaks over threshold models

31



0e+00 6e+07

0e
+

00
4e

+
07

8e
+

07

BRITISH VIRGIN ISLANDS

Threshold

M
ea

n 
E

xc
es

s

0e+00 6e+06

0e
+

00
4e

+
08

BARBADOS

Threshold

M
ea

n 
E

xc
es

s

0e+00 6e+07

0.
0e

+
00

1.
0e

+
08

ANTIGUA AND BARBUDA

Threshold

M
ea

n 
E

xc
es

s

0 1000000 2500000

0e
+

00
3e

+
07

ARUBA

Threshold

M
ea

n 
E

xc
es

s

0.0e+00 8.0e+06

0.
0e

+
00

1.
5e

+
08

TRINIDAD AND TOBAGO

Threshold

M
ea

n 
E

xc
es

s

0e+00 3e+07

0e
+

00
6e

+
07

SAINT KITTS AND NEVIS

Threshold

M
ea

n 
E

xc
es

s

0e+00 3e+09

0e
+

00
2e

+
10

4e
+

10

PUERTO RICO

Threshold

M
ea

n 
E

xc
es

s

0.0e+00 2.0e+08

0e
+

00
4e

+
08

8e
+

08

VIRGIN ISLANDS

Threshold

M
ea

n 
E

xc
es

s

0.0e+00 2.0e+07

0e
+

00
2e

+
08

DOMINICA

Threshold

M
ea

n 
E

xc
es

s

0 1500000

−
1e

+
08

2e
+

08

GRENADA

Threshold

M
ea

n 
E

xc
es

s

0.0e+00 2.0e+07−
5.

0e
+

07
1.

0e
+

08

SAINT LUCIA

Threshold

M
ea

n 
E

xc
es

s

0e+00 4e+07

0e
+

00
6e

+
07

ANGUILLA

Threshold

M
ea

n 
E

xc
es

s

Figure A.1: Threshold choice and mean residue plots, 1/3
This figure shows Mean Residual (MRL) plots for hurricane. The plots show tail
expectation E[Y − m|X > m] for different values of the threshold m. The idea
underlying the use of the MRL plot is to find the threshold after which the plot
is linear, since a defining feature of the GPD is that its tail expectation is linear
in the threshold: E[Y − m1|Y > m1] = E[Y − m0|Y > m0] + m1

ζ
1−ζ where Y ∼

GDP (m0, σ0, ζ), and m1 > m0 are thresholds.
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Figure A.2: Threshold choice and mean residue plots, 2/3
This figure shows Mean Residual (MRL) plots for hurricane. The plots show tail
expectation E[Y − m|X > m] for different values of the threshold m. The idea
underlying the use of the MRL plot is to find the threshold after which the plot
is linear, since a defining feature of the GPD is that its tail expectation is linear
in the threshold: E[Y − m1|Y > m1] = E[Y − m0|Y > m0] + m1

ζ
1−ζ where Y ∼

GDP (m0, σ0, ζ), and m1 > m0 are thresholds.
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Figure A.3: Threshold choice and mean residue plots, 3/3
This figure shows Mean Residual (MRL) plots for hurricane. The plots show tail
expectation E[Y − m|X > m] for different values of the threshold m. The idea
underlying the use of the MRL plot is to find the threshold after which the plot
is linear, since a defining feature of the GPD is that its tail expectation is linear
in the threshold: E[Y − m1|Y > m1] = E[Y − m0|Y > m0] + m1

ζ
1−ζ where Y ∼

GDP (m0, σ0, ζ), and m1 > m0 are thresholds.
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