

CONTAGION RISK IN THE JAMAICAN FINANCIAL SYSTEM

Toni-Anne Milwood Bank of Jamaica

Presented at the 46th Annual Monetary Studies Conference Port-of-Spain, Trinidad

November 18, 2014

OUTLINE

Motivation

Literature Review

Network Topology Measures and Results

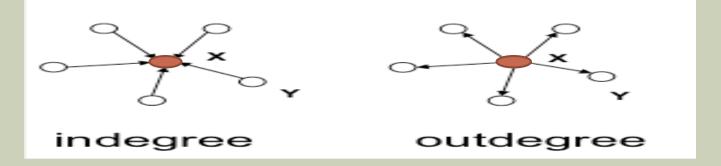
Simulation Model and Results

Conclusion and Policy Implications

MOTIVATION

- GFC highlighted the vulnerabilities in financial systems including the degree of complexity or interconnectedness.
- Interconnectedness of the financial system as a shock-amplifier vs. shock-absorber during periods of stress.
- Understanding the structure of financial flows allows for assessment of systemic stability and provision of liquidity.
- Objectives:
 - Determine the structure of Jamaica's financial system network and identify significant institutions using network topology.
 - Determine the resilience of the network to credit and funding shocks using network simulations.

LITERATURE REVIEW


- Bach and Atalay (2008) USA: New York
 - Federal funds market network sparse; most banks with few counterparties and few banks with large number of counterparties.
- Iazetta and Manna (2009) Italy
 - Few banks pivotal to redistribution of liquidity; 10 banks interconnected with 3 amoung top 10 by volume of traded deposits.
- Hausenblas, Kubicova and Lesanovska (2012) Czech Republic
 - Sparse and heterogenous network; few banks form core, many banks form periphery; limited contagion based on simulations.
- Ogawa, Park, Singh and Thacker (2013) Eight CARICOM countries
 - Interconnectedness in large banking groups and conglomerates; Bahamas and Barbados recorded highest inflows of funds due to large offshore sectors.

NETWORK TOPOLOGY (1)

- Nodes financial institutions vs. Links connections between financial institutions (credit exposures/ funding relationships).
- Descriptive network statistics
 - Connectivity or Density the unconditional probability that two institutions have a link with each other.
 - Clustering coefficient the probability that two neighbours with a direct link to a node are linked together.

NETWORK TOPOLOGY (2)

- Centrality Measures
- Degree centrality counts the number of directed links that are connected to a node.
 - In-degree No. of institutions that the node of interest has received funding from (liabilities of a node).
 - Out-degree No. of institutions that the node of interest has funded (assets of a node).

Average Degree – No. of links divided by the No. of nodes.

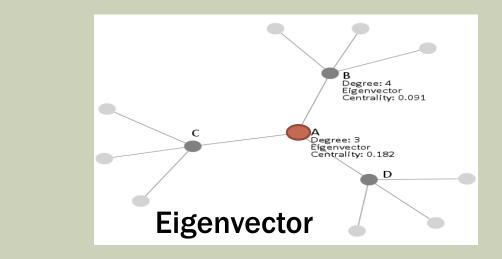
NETWORK TOPOLOGY (3)

Closeness Centrality or Average Path Length

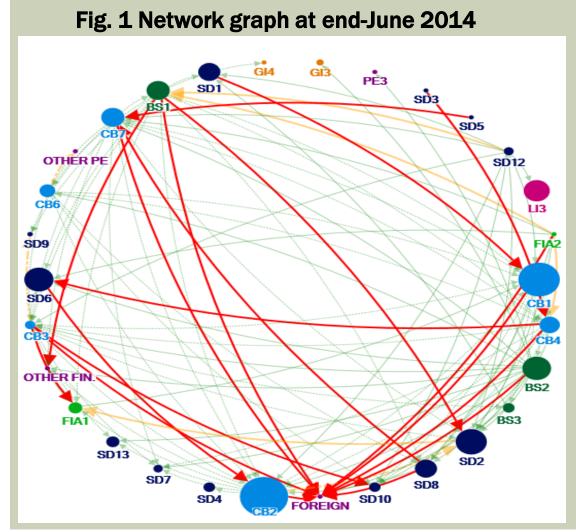
- Average shortest distance between two nodes.
- Measures how far away nodes are from each other.
- A node is considered important if it is relatively close to all other institutions.

NETWORK TOPOLOGY (4)

Betweenness Centrality

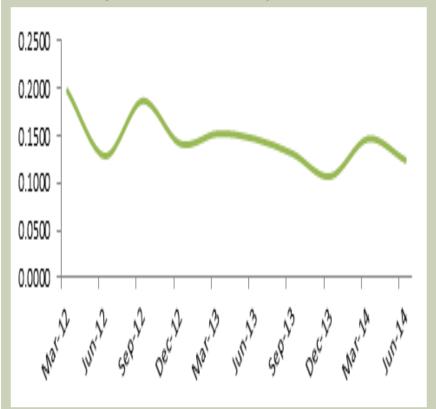

- No. of shortest paths that pass through a node.
- A node is important if it is needed to connect other pairs of nodes.

х


betweenness

Eigenvector Centrality

- Quality of the connections within the network.
- Examines to what extent a node is connected to other highly connected players.

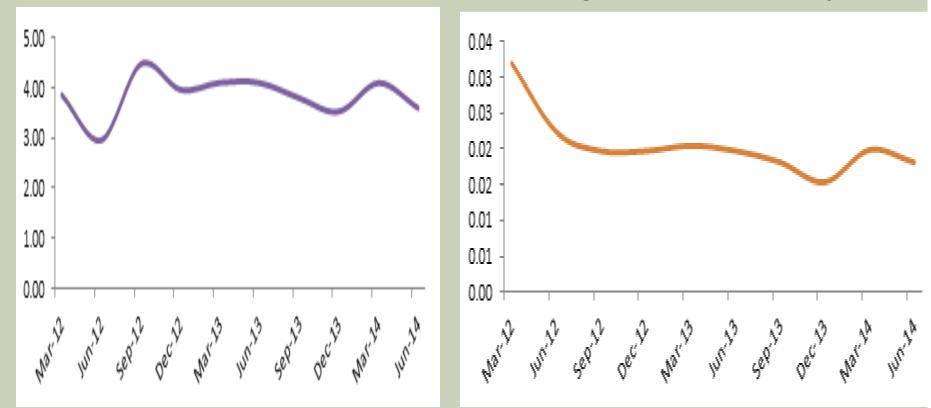

NETWORK TOPOLOGY RESULTS (1)

- DTIs, top SDs, ICs, top CUs, OFIs, PEs and Foreign.
- Net credit exposures are determined by netting the transactions between two institutions.
- Positive net credit exposures indicate net creditors (provided net funding to other nodes).
- Graph indicates exposures of several institutions to foreign institutions primarily in the form of deposits.

NETWORK TOPOLOGY RESULTS (2)

Fig. 2: Connectivity

0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 ep

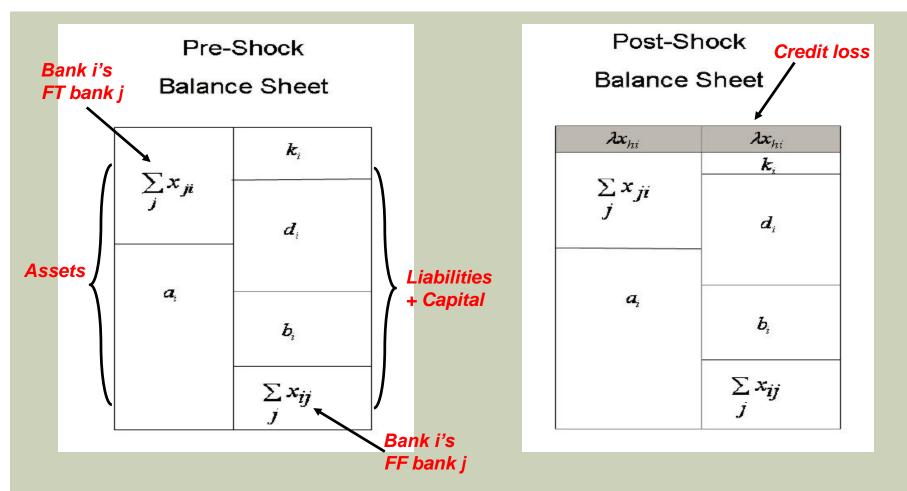

Fig. 3: Clustering coefficient

At June 2014 12.4% of links utilised relative to 19.7% at March 2012. At June 2014, 24.4% chance that neighbours of a node are connected.

NETWORK TOPOLOGY RESULTS (3)

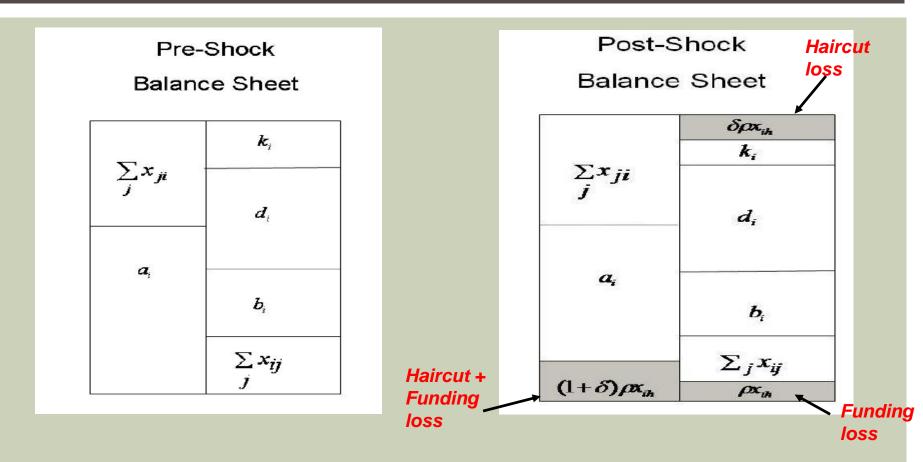
Fig. 4: Average Degree

Fig. 5: Closeness Centrality

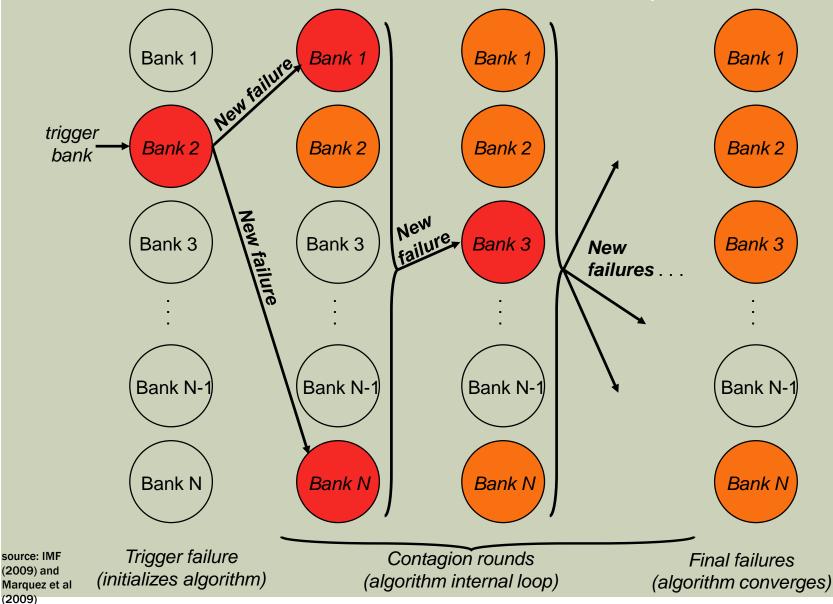

- Average institution had approx. 4 counterparties.
- Closeness relatively low ranging 1.5% and 3.2% over the period.

NETWORK TOPOLOGY RESULTS (4) – CENTRALITY MEASURES

 Table 1: Centrality for top 5 institutions at June 2014


Rank - June 2014	Degree Centra	ality: In-Degree	Degree Centr	ality: Out-Degree	Closeness Centrality	Betwee	nness Centrality	Eigenve	ctor Centrality
2 🤇	FOREIGN CB2 SD2 CB1 CB4	9 9 8	BS2 BS1 CB3 CB7 SD12	15 CB3 14 CB2 11 CB7 11 CB1 9 BS1	0.024	BS1 CB2 CB7	142.2 CB 116.6 CB 106.5 CB 99.1 BS 83.3 CB		0.070 0.069 0.067 0.067 1_2.066

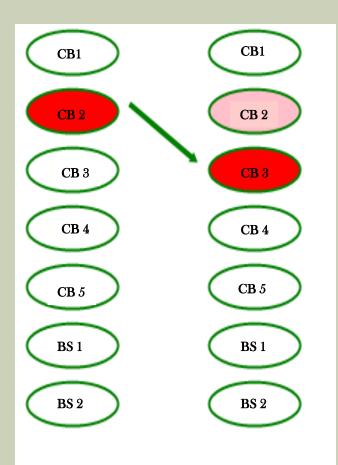
ESPINOSA-VEGA AND SOLÉ SIMULATION MODEL (1)


Credit Channel - domino effects triggered by the default of an institution's interbank obligations.

ESPINOSA-VEGA AND SOLÉ SIMULATION MODEL (2)

Credit+Funding Channel - institutions no longer able to replace all the funding granted by the defaulted institutions, resulting in a fire sale of assets.

ESPINOSA-VEGA AND SOLÉ SIMULATION MODEL (3)

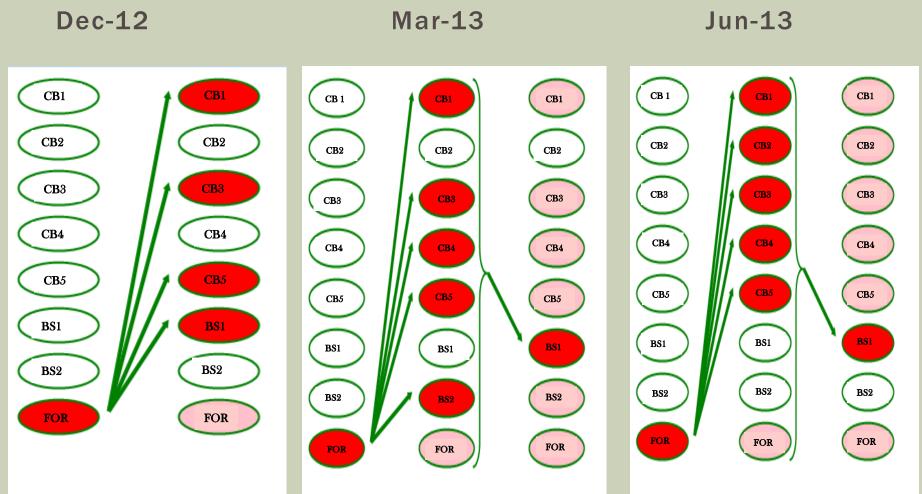


ESPINOSA-VEGA AND SOLÉ SIMULATION MODEL (4)

- Assessed contagion pass through effects in the quarters before, during and after the National Debt Exchange (NDX).
- Utilized gross bilateral exposures for DTIs and SDs as most of the transactions are concentrated among these institutions.
- Domestic Intuitions only vs. Domestic + Foreign Institutions
- $\lambda = 100$ per cent as the model utilizes unsecured or uncollateralised transactions.
- Initial ρ = 16.4 per cent, (1- ρ) = 86.6 per cent roll-over ratio of interbank debt.
- Initial δ = 25.0 per cent haircut in the fire sale of assets.

SIMULATION RESULTS (1) – DOMESTIC CREDIT CHANNEL

Mar13



	Dec-12	Mar-13	Jun-13	Dec-12	Mar-13	Jun-13	Dec-12	Mar-13	Jun-13	
	Failed	Failed Capital (in % of total					Index o	of Vulnerab	oility-	
	capital)			Index of Contagion			Author's Calculations			
CB1	12.1	12.1	11.9	1.9	2.3	2.3	0.9	1.9	0.2	
CB2	15.3	17.4	16.8	> 3.3	11.1	11.8	0.1	0.2	0.1	
CB3	1.3	1.4	1.3	0.3	0.7	0.3	1.8	22.3	47.3	
CB4	3.0	2.9	2.7	0.7	0.9	1.6	14.3	19.6	3.7	
BS4	0.9	1.0	1.0	1.4	1.2	0.4	13.0	9.6	4.4	
SD1	7.6	7.6	7.6	0.0	0.0	0.0	8.1	5.8	23.5	
SD2	10.3	9.9	9.8	0.0	0.0	0.0	4.4	3.9	8.5	
SD3	0.0	0.6	0.6	0.0	0.0	0.0	- 🤇	24.6	21.3	
SD4	2.2	2.1	2.0	0.3	0.3	0.3	0.1	0.8	1.5	
SD5	0.9	0.5	0.5	0.5	0.2	0.2	62.5	32.6	31.7	
SD6	10.3	8.6	8.2	0.0	0.0	0.0	2.0	22.7	_46.5	

SIMULATION RESULTS (2) – DOMESTIC CREDIT-PLUS-FUNDING CHANNEL

	Dec-12	Mar-13	Jun-13	Dec-12	Mar-13	Jun-13	Dec-12	Mar-13	Jun-13	
	Failed Capital (in % of total						Index o	f Vulnerabi	lity-	
	capital)			Index of Contagion			Author's Calculations			
CB1	12.1	12.1	11.9	2.0	3.3	2.3	0.7	1.3	0.8	
CB2	15.3	17.4	16.8	3.3	11.4	11.9	0.7	1.9	2.3	
CB3	1.3	1.4	1.3	0.3	1.6	0.9	1.2	9.9	8.7	
CB4	3.0	2.9	2.7	1.6	1.8	1.9	6.2	6.0	3.9	
BS4	0.9	1.0	1.0	1.5	1.3	0.5	90.9	69.8	> 13.3	
SD1	7.6	7.6	7.6	0.7	0.9	1.0	8.1	5.8	23.5	
SD2	10.3	9.9	9.8	1.3	1.2	2.3	<i>3</i> .7	3.9	8.5	
SD3	0.0	0.6	0.6	0.0	0.1	0.1	0.0	24.6	21.3	
SD4	2.2	2.1	2.0	0.3	0.4	0.4	1.5	2.6	3.1	
SD5	0.9	0.5	0.5	0.8	0.3	0.3	89.5	5.4	49.5	
SD6	10.3	8.6	8.2	0.2	2.1	4.1	1.4	22.7	46.5	

SIMULATION RESULTS (3) – DOMESTIC AND FOREIGN CREDIT CHANNEL

CONCLUSION AND POLICY IMPLICATIONS (1)

- The financial institution network in Jamaica was revealed to be relatively sparse utilizing less than 20.0 per cent of possible links over the period March 2012 to June 2014.
- Funding relationships were concentrated in a small number of institutions which had a large number of counterparties.
- 5 institutions identified based on centrality measures as important at end-June 2014.
- Topology information complements other methodologies such as Basel III SIFI scoring framework and conditional value-at-risk (CoVaR) to identify SIFIs.
- BOJ should assess the topology alongside the value of interbank transactions to identify trends in lending patterns throughout the network and tailor regulations towards reducing contagion risk.

CONCLUSION AND POLICY IMPLICATIONS (2)

- Identification of firm and group interconnectedness becomes a crucial element in the construction of institutional recovery plans.
- Domestic DTIs and SDs were significantly exposed to foreign institutions resulting in failures upon hypothetical defaults of foreign institutions.
- Simulations excluding foreign institutions revealed only one default between two commercial banks.
- Simulations can be utilized by the BOJ to conduct stressed simulations (e.g. macroeconomic shocks) and track the path of contagion.

THANK YOU!

COMMENTS?

