Quantifying the Economic Impact of Hurricanes in the Caribbean: A View from Outer Space

Eric Strobl

Ecole Polytechnique and SALISES

 The Caribbean is subject to many hur 	ricanes
--	---------

Media mostly quantifies the effects of these events in terms of cost of physical damages

• But natural disasters can have much more wide reaching effects (ex: business interruptions etc.), potentially affecting economic growth in the short and long term

Arguably policy makers may be even more interested in these latter effects

Example: Grenada and Hurricane Ivan (2004)

Economic Growth Rate: 2003: +6.25% 2004: -6.75% 2005: +12.00%

• So how much is due to the event is not clear.... → econometric estimation

• Example of econometric studies : Hurricanes in the Caribbean

Hsiang (2010): no effect

Bluedorn (2005): mean strike \rightarrow short term effect of 0.6% \downarrow

Strobl (2011): mean strike \rightarrow short term effect of 0.8%

• So the effect appears to be relatively small...

- An important aspect of the literature has focused on the aggregate (national or sectoral)
 impact
- But, hurricanes are actually very localized events...
- Problem: intra-national level data on economic activity virtually non-existent or non-attainable for most developing countries

This paper: examines the economic growth impact of hurricanes in the Caribbean at the localized level

Basic Task - Estimate:

$$GROWTH_{ijt} = \alpha + \beta HURR_{ijt} + \varepsilon_{ijt}$$

Need:

- 1. Proxy of potential destruction of Hurricanes (HURR) for region *j* in country *i* at time *t*
- 2. Proxy of economic activity (GROWTH) for sub-region j in country i at time t

What's a hurricane?

Tropical storm of a minimum strength of 119 km/hr wind speed (in the North Atlantic Region)

Characteristics of a hurricane?

Will typically have an eye and curved bounds of clouds and thunder-storms that move in a spiral fashion

- Destruction will take three forms:
 - 1. Winds/tornadoes cause damage to buildings
 - 2. Strong rainfall can result in flooding and mudslides
 - 3. Storm surges in areas on or near the coast
- All of these depend on the wind speed of the hurricane

- Data Source: HURDAT: hurricane track data provides 6-hourly position and maximum wind speed and pressure for essentially all the hurricanes in the North Atlantic area (since 1851).
- Tropical Cyclone Activity (1992-2009):

To translate these data into potential destruction for any point *P* we use a wind field model (Boose et al., 2004):

→ For each point P one then gets a measure of wind speed – the cubic power of this (Emanuel, 2006) is considered a proxy of potential destruction at P

PROXY OF ECONOMIC ACTIVITY

- Difficult to get sub-national level measures of economic activity for most developing countries
- Proposed Solution: brightness of nightlights as measured from satellites –(Henderson et al.

(2012), Chen and Nordhaus (2011))

Nightlight Data:

DEFENSE METEROROLOGICAL SATELLITE PROGRAM:

- ground-level night time imagery since the 1970s (digital archive extends back to 1992);
- resulting images are normalized across satellites to a scale ranging from 0 (no light) to 65 (maximum light); resolution 1km²
- > night light data represents human activity (e.g. electrified human/industrial settlements);

PROXY OF ECONOMIC ACTIVITY

Advantages:

[1] Available at very local (1 km) level

Jamaica:

PROXY OF ECONOMIC ACTIVITY

[2] Strong Correlation with Income:

Disadvantage: Still ONLY a Proxy!

ECONOMETRIC ESTIMATION

Want to estimate:

$$GROWTH_{ijt} = \alpha + \beta HURR_{ijt} + \mu_{ij} + \eta_t + \varepsilon_{ijt}$$

where the spatial unit's ij are 1km grid cells

→ unbalanced panel: 17 years; 22 Caribbean countries; +140,000 cells; +1.6 mill. Observations

	(1)	(2)	(3)
PDI_t	-0.524***	-0.511***	-0.518***
	[0.106]	[0.105]	[0.105]
PDI _{t-1}		0.178	0.171
		[0.127]	[0.125]

ECONOMETRIC RESULTS

- How to translate these nightlight changes into a `more' economic unit?
- Link between nightlight and per capita income at country *i* level (Henderson et al, 2012):

$$Gr_GDP/area_{i,t} = \theta Gr_Nightlight/area_{i,t} + \mu_i + \eta_t + \varepsilon_{i,t}$$

Result: [22 Caribbean nations, 351 obs.]

$$\theta = 0.444**$$

- → fall in1.5% economic growth of average strike
- Strobl (2012): using a similar ex-ante measure of potential destruction with aggregate GDP measures → fall of 0.8 %

CONCLUDING REMARKS

- Examined the impact of hurricane strikes in the Caribbean at the local level
- Results indicate that aggregation masks some of the impact (about half)
- Even at the local level the impact is small and short-lived
- Could be many reasons for this: (a) actually true, (b) data masks underlying differences, (c)
 `bad' data

Current Research: use of synthetic tracks to generate risk maps and distributions of likely economic growth impacts for the Caribbean

