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Abstract 
 

This paper develops an effective value at risk (VaR) methodology to complement 
existing Bank of Jamaica financial stability assessment tools. This methodology employs 
principal component analysis and key rate durations for assessing interest rate risk of the 
Jamaican banking sectors’ holdings of both local and global Government of Jamaica 
(GOJ) bonds. Principal Components Analysis (PCA) is proposed as a tractable and 
simple-to-implement method for extracting market risk factors from observed data. This 
approach, which is informationally efficient, quantifies the risk associated with portfolios 
using three principal factors that affect yield curves. Due to the orthogonal nature of the 
factors, correlation and covariance between the yields do not have to be explored, 
simplifying the calculation of VaR for the portfolios. Results of this paper indicate that 
the PC VaR outturn for the Jamaican banking system is higher relative to both parametric 
and historical VaR outturns suggesting that the PC VaR holds more information as it 
relates to the risks impacting banking system portfolios.  
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1. Introduction 

 

The main contribution of this paper is the development of an additional Value at Risk 

(VaR) 2 framework for measuring and monitoring risk, contingent on changes in the 

interest rate term structure of Government of Jamaica (GOJ) bonds. The paper employs 

principal component analysis (PCA) for the efficient evaluation of the risk factors which 

affect bond returns in a VaR framework. The paper takes into consideration both the 

skewness and fat tailed nature associated with the return on bonds. It is widely 

understood that returns on financial instruments tend to systematically depart from 

normality, with financial returns showing higher peaks and fatter tails than normal 

distributions, especially over shorter periods. Thus a framework, which imposes 

normality as being implicit in the evolution of returns of financial instruments, such as 

the parametric-VaR, would consistently underestimate the risk of loss to a portfolio.  That 

is, extreme events happen more frequently than observed under normal conditions, hence 

underscoring the importance of a framework which would address this particular stylized 

fact that financial data presents.  

 

Principal Components Analysis, which is a widely used technique in portfolio risk 

management, reduces the amount of risk factors driving a portfolio re-evaluation and can 

be combined with key rate duration to calculate principal component duration (PCD) 

factors. "Risk factors" are often defined and used to summarize observed changes in 

market prices and volatilities. Key rate duration (KRD), which is a risk metric applied to 

bond prices, measures the sensitivity of a security’s value to a 1.0 per cent change in 

yield for a given maturity.3 It allows for the examination of changes in the yield curve as 

a result of non-parallel movement in interest rates. The overall advantage of KRD is that 

it gives information on whether or not the portfolio is exposed to risk from non-parallel 

shifts in the yield curve, such as steepening or flattening, which cannot be measured from 

                                                 
2 Value at risk may be defined as the worst loss over a target horizon such that there is a low, prespecified 
probability that the actual loss will be larger (Jorion 3rd ed.) 
3 See Nawalkha 2005. 
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dollar duration.4 The advantage of combining these two concepts is that it allows risk 

managers to benefit from the intuitive description of risk provided by KRD as well as the 

computational benefits associated with PCA. It also fosters more parsimonious portfolio 

strategies that do not exhaust all the degrees of freedom in portfolio construction.5  

 

Principal component analysis was first applied to the fixed income market in a paper by 

Garbade (1997). The principal component (PC) is a linear combination of the original 

variables of interest and the components are orthogonal resulting in them being additive 

and statistically independent.6 Thus, the sensitivity of fixed term instruments to 

movements in any of the PCs can be evaluated. In short, PCA finds a linear combination 

of the observed asset returns that "explains" as much as possible the observed variability 

of the data. The first variable explains the greatest amount of variation, the second 

component defines the next largest and is independent to the first PC, and so on and so 

forth.   

 

When PCA is applied to the term structure of interest rate, a fairly standard result would 

provide three PC values that would be able to explain the majority of the total variation of 

entire yield. The first PC generally explains up to 80.0 per cent of change in the yield 

curve while the second and third PCs would explain 11.0 per cent and 5.0 per cent, 

respectively.7 The first PC value would be able to explain the impact of parallel shifts of 

the yield curve; the second PC generates an interpretation of the “tilt” or “rotation” of the 

curve while the third indicates the “twist”. Parallel movements of the yield curve are 

commonly caused by expected inflation, a change in slope may be caused by changes in 

expected long-term inflation or changes in market risk premiums, while  changes in the 

curvature of the curve represents changes in the volatility of interest rates.8  

                                                 
4 Government of Canada Treasury Risk Management Framework. 
5 See Nawalkha, 2005. 
6 For risk management purposes, additively is important because it allows evaluation of the impact of say 
one unit of added parallel shift risk to an existing position. Statistical independence is important because it 
allows the factors to be managed separately, say to hedge a parallel shift without having to think about its 
effect on the other factors (Nifhker, 2000). 
7 See Falkenstein, 1997. 
8 It must be noted that short-term instruments tend to be more sensitive to parallel movements of the yield 
curve while instruments with long term tenure will be sensitive to changes in the slope of the curve. 
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Jatnshidian and Zhu (1997) applied PCA to fixed-income portfolios in order to derive a 

discrete approximation of the portfolio value distribution, while Loretan (1997) and Frye 

(1997) apply it in the context of a VAR methodology. The advantage of these 

frameworks emanates from its characteristics of analyzing risk associated with 

investment products without worrying about the normality issues associated with the data 

as well as information lost due to correlation and covariance issues. It also allows 

researchers the power of assessing components of risk in isolation, therefore leading to a 

proper assessment of individual risk components on portfolio valuation which can be 

readily investigated.  

 

The main focus of the paper will be on assessing the risk associated with the GOJ bond 

component of the banking system bond portfolio using a PC VAR framework. Focus will 

only be placed on GOJ bonds due to a large portion of the banks’ bond portfolio 

consisting of GOJ bonds as at end December 2008. This holds true particularly for 

building societies (see table 1). 
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Table 1 

HOLDINGS OF GOVERNMENT OF JAMAICA BONDS BY BANKING SECTOR 

AS AT DECEMBER 2008 

 Dom.Securities as % 
of Total Assets 

Glob.Securities as % 
of Total Assets 

Dom.Securities as % of 
Total Bond Portfolio 

Glob.Securities as % of 
Total Bond Portfolio 

CBank1 15.0% 0.00% 29.1% 0.00% 
CBank2 6.5% 0.00% 15.3% 0.00% 

CBank3 3.1% 0.00% 28.3% 0.00% 

CBank4 8.0% 0.09% 33.4% 0.37% 

CBank5 15.0% 0.16% 40.4% 0.42% 

CBank6 11.3% 0.02% 79.6% 0.17% 

CBank7 7.8% 0.01% 64.5% 0.07% 

Mbank1 3.1% 0.58% 5.9% 1.09% 

Mbank2 1.9% 0.11% 17.1% 1.03% 

Mbank3 0.9% 0.14% 6.2% 1.01% 

BSoc1 
 

0.0% 0.00% 0.0% 0.00% 

BSoc2 
 

9.8% 0.04% 64.2% 0.26% 

BSoc3 
 

6.2% 0.09% 36.1% 0.53% 

BSoc4 
 

14.5% 0.00% 84.7% 0.00% 

 

The remainder of this paper is divided into six sections. Section two will give information 

on the data to be used, while section three will present the procedures used in this study. 

Section four and five will present the results and discussions of the results, respectively. 

Section six will give some conclusions and recommendations arrived at from the study.  

 

2. Data Set 

 

The data consists of a time series of yields from 23 February 2006 to 18 March 2009 (796 

data points) for GOJ global securities with maturity structures of 7-year, 9-year, 20-year 

and 30-year. In addition, GOJ domestic bond yields ranging from 3 January 2008 to 18 

March 2009 (273 data points) with maturity structures of 6-month, 2-year, 3-year, 6-year, 
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9-year, 15-year, 20-year and 25-year.9 Natural logarithms of these series were taken and 

then the series were first-differenced to induce stationarity. Holdings of GOJ securities by 

each institution were obtained from re-pricing data for the banking system as at end-

December 2008.  

 

3. Methodology 

 

3.1 Statistical Analysis of data   

The properties of the log of interest rate changes were observed to ascertain if term 

structures followed the stylized facts known in other markets.10 Simple statistical tests 

were conducted on the data as well as the Augmented-Dickey Fuller test to ascertain if 

the data was stationary, as well as Jarque-Bera test for normality. 11 

 

3.2 Determining the Key Rate Duration 

Each bond’s repricing structure and scheduled coupon payments were used to compute 

the yield to maturity per instrument. Equation (1) was then employed to ascertain the 

KRD of each bond. 

 

)(

1)(
ii tyt

ii

e
tCF

p
iKRD ×

×
=     (1) 

Where is the ith key rate duration, p is the price of the bond,  is the ith cash 

flow, and  is the ith time period. 

)(iKRD

it

iCF

 

3.3 Determining the Principal Components and Principal Components Duration 

Consider a set of N variables  of changes in bond yields with covariance 

matrix . We wish to reduce the dimensions of 

nyy ,...,1

∑ ∑ without too much loss of content, by 

approximating it by another matrix . The goal is to provide a good approximation of *∑

                                                 
9 Yield data was obtained from Bloomberg. 
10 If the yield curve follow a specific pattern this can be used to find specific functional forms matching the 
curve. 
11 See appendix 1. 
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the variance of a portfolio ω=Ζ * =ΖV  process consists of replacing 

the original variables 

y' using  Theωω *' ∑ .

y  by another set, cΔ  , suitab  selected. ly
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The first PC is the linear combination    

∑
=

Δ=Δ
m

i
iji tyuc

1
)(                 (2) mj ,......,1=

1μ

such that its variance is maximized, subject to a normalization constraint on the norm of 

the factor exposure vector . A constrained optimization of this 

variance, , shows that the vector 

1
'
1μμ

1
2 )(σ =Δc '

1μ ∑ μ  must satisfy 111 μλμ =∑ . Here, 

is the largest eigenvalue of the matrix 1λ=1
2 )(σ Δc and 1μ  its associated eigenvector. ∑

 

The second PC is the one that has greatest variance subject to the same normalization 

constraint  and to the fact that it must be orthogonal to the first . And 

so on for all the others.  

12
'
2 =μμ 01

'
2 =μμ

 

This process basically replaces the original set of variables, y , by another set of 

orthogonal factors that has the same dimension but where the variables are sorted in order 

to decreasing importance. This leads to the singular value decomposition, which 

decomposes the original matrix as  
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where P is an orthogonal matrix, i.e., such that its inverse is also its transpose, 

and D a diagonal matrix composed of theIPP =' . 12 λ

 

                                                 
12 Matlab code for generating PC is given in appendix 4. 
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The benefit of this approach is that we can now simulate movements in the original 

variables by simulating movements with a much smaller set of PCs. It must be noted that 

the change in interest rates can now be expressed by equation (5) below 

 

cicsishihi clclclty Δ+Δ+Δ=Δ )(       (4) 

 

Equation (5) describes the change in interest rates as a function of the product of the 

factor loadings and the principal components. 

 

The principal components are defined as follows: 

 

,
1

1*
1 λ

ccch
Δ

=Δ=Δ       ,
2

2*
2 λ

cccs
Δ

=Δ=Δ       ,
3

3*
3 λ

cccc
Δ

=Δ=Δ   (5) 

 

 

The factor loadings are defined as follows: 

 

                      ,11 λulih =          ,22 λiis ul =              ,33 λiic ul =   (6) 

 

nλλλ ≥≥ ...21 are the eigenvalues of c, ranked in decreasing order and, nu μμ ,...,, 21  are 

the corresponding eigenvectors.13  

 

The first three PCs chosen to model the yield curve dynamics should (theoretically) 

explain almost 90% of the variation in yields. The following criterion is usually used to 

ascertain the number of PCs to be adopted, 

 

*

1
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++
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13 See appendix 2 
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The PCs with indices j>k have a small effect on the underlying vector of risk factors 

since the corresponding have eigenvalues which are small. This criterion specifies the 

ratio of the total variances of  and ξ̂ ξ  is given as, 

 

∑ ===
i

TEEVarVaR ξξξξξ .)()( 2

   (8) 
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Once the PCs have been identified, the PCD are computed using the equation (10) below: 

 

∑
=

×=
m

i
ivliKRDvPCD

1
)()(     (9) 

 

Equation (10) indicates that the PCD is summation of the product of the KRDs matrix 

and factor loadings matrix of each bond. Note that  indicates whether the height, slope 

or curvature is being calculated for each bond, which correspond to parallel shifts, tilts 

and changes in the curvature of the yield curve, respectively.  

v

 

The portfolio can be immunized using the PC model.14 The immunization constraint is 

given as follows: 

 

Hhnn lHhPCDphPCDphPCDphPCD ×=×+×+×= )(....)()()( 2211  (10) 

Hsnn lHsPCDpsPCDpsPCDpsPCD ×=×+×+×= )(....)()()( 2211  

Hcnn lHcPCDpcPCDpcPCDpcPCD ×=×+×+×= )(....)()()( 2211  

                                                 
14 Immunization may be defined as portfolio diversification (Nawalkha, 2005). 
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1....21 =++ nppp
 

Where p  represents the proportion of various types of bonds held in the portfolio. 

 

This immunization method is used to construct domestic and global GOJ instrument 

portfolios for the local banking sector using the actual domestic as well as actual US$ 

denominated re-pricing schedule as at end-December 2008. 

 

3.4 Determining VaR Using Principal Component Duration 

The VaR value at the 99th per cent levels for each portfolio using the PCD model was 

then calculated using the following equation, 

  

222
99 )()()(326.2 cPCDsPCDhPCDVaR portportport ++××Γ=

                   (11) 

Where  is the market value of the portfolio and the 99th percentile of a standard 

distribution is 2.326. 

Γ

 

A 10-day PC VaR was calculated as well as a corresponding 10-day parametric and non-

parametric VaR for comparative purposes. 

 

4. Results  

 

4.1 Statistical Analysis 

The statistical properties observed for interest rate term structure of domestic GOJ bonds 

as well as global GOJ bonds were consistent with stylized facts known to emerging 

market bonds. Bond yields moved around a long-term average and exhibited large 

volatility during periods of uncertainty. This was particularly true for global bonds (see 

Figure 1 and Figure 2). 
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Figure 1. 

6-year Domestic GOJ yield and Volatility
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Figure 2. 

9-year Global GOJ  yield and Volatility
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The application of the Dickey-Fuller unit root test indicated that the log of interest rate 

changes does not have a unit root and is therefore stationary.15 The stationarity of the 

data allows for constant autocorrelation over time which permits for the efficient 

employment of PCA. The results of the normality test conducted indicate that the returns 

for all bonds are not normally distributed.16 Taken together, these results  suggests that 

the use of PC-VaR rather than the parametric VaR would be best suited for the evaluation 

of the susceptibility of portfolio values to changes in the term structure of the yield curve 

of GOJ bonds.  

                                                

 

 

 
 

15 See appendix 1 for results of Augmented Dickey-Fuller test. 
16 See appendix 1 for results of Jarque-Bera test. 
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4.2 Examination of Re-pricing Gap 

An examination of re-pricing schedule for domestic assets structure in the banking sector 

as at end-December 2008 reveals that commercial banks as well as building societies held 

a larger portion of their assets in domestic instruments (see Table 2). The investment 

profile of, commercial bank 7 and merchant bank 1 followed a barbell distribution.17 The 

investment profiles for commercial bank 1, commercial bank 2, commercial bank 3, 

commercial bank 4, commercial bank 5, commercial bank 6, merchant bank 2, building 

society 2, building society 3 and building society 4 followed a bullet distribution.18  

 

For global bond holdings, commercial bank 5, commercial bank 7, merchant bank 3 and 

followed a barbell investment profile. Commercial bank 4, commercial bank 6, merchant 

bank 2, building society 2 and building society 3 followed a bullet investment profile (see 

Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
17 A barbell portfolio has high key rate durations corresponding to the short and long term interest rates and 
low durations for intermediate rates, and so it is preferred if the short and the long rates fall more than the 
intermediate rates (Nawalkha, 2005). 
18 A bullet portfolio has low key rate durations corresponding to the short and long term interest rates and 
high durations for intermediate rates, and so it is preferred if the short and the long rates fall less than the 
intermediate rates (Nawalkha, 2005). 
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Table2. 

91 - 365 days 1 - 2 yrs 2 - 5 yrs 5 - 10 yrs 10 - 15 yrs 15 - 20 yrs over 20 yrs

CBank 1 12.90% 37.56% 36.60% 6.84% 4.38% 0.00% 1.72%
CBank 2 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
CBank 3 0.00% 7.56% 82.48% 9.96% 0.00% 0.00% 0.00%
CBank 4 64.98% 0.00% 35.02% 0.00% 0.00% 0.00% 0.00%
CBank 5 84.89% 0.12% 10.58% 2.23% 0.32% 1.86% 0.00%
CBank 6 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
CBank 7 38.82% 0.00% 51.20% 8.15% 1.82% 0.00% 0.00%

Mbank 1 16.20% 34.70% 0.55% 7.63% 40.91% 0.00% 0.00%
MBank2 0.00% 32.65% 67.35% 0.00% 0.00% 0.00% 0.00%
MBank3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

BSoc1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
BSoc2 86.76% 11.70% 0.00% 1.53% 0.00% 0.00% 0.00%
BSoc3 98.02% 0.00% 1.98% 0.00% 0.00% 0.00% 0.00%
BSoc4 95.22% 0.00% 4.78% 0.00% 0.00% 0.00% 0.00%

91 - 365 days 1 - 2 yrs 2 - 5 yrs 5 - 10 yrs 10 - 15 yrs 15 - 20 yrs over 20 yrs

CBank 1 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
CBank 2 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
CBank 3 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
CBank 4 0.000% 0.000% 73.886% 26.114% 0.000% 0.000% 0.000%
CBank 5 4.329% 4.136% 42.691% 29.459% 19.385% 0.000% 0.000%
CBank 6 100.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
CBank 7 5.887% 37.791% 0.000% 16.002% 40.320% 0.000% 0.000%

Mbank 1 0.000% 8.939% 1.039% 12.643% 12.623% 20.090% 44.665%
MBank2 0.000% 79.730% 20.270% 0.000% 0.000% 0.000% 0.000%
MBank3 24.176% 0.000% 57.497% 8.910% 9.416% 0.000% 0.000%

BSoc1 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
BSoc2 11.480% 74.568% 0.000% 13.952% 0.000% 0.000% 0.000%
BSoc3 100.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
BSoc4 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%

The Re-pricing gap Domestic Assets Structure (end-December 2008).

The Re-pricing gap FX Assets Structure (end-December 2008).

Merchant Banks

Building Societies

Commercial Banks

Merchant Banks

Building Societies

Commercial Banks

 
 

4.3 Sensitivity Factors of Instruments 

The KRD outturn indicates that as the maturity of each bond in the portfolio structure 

increased, the KRD increased, consistent with a priori expectations. In addition, the 

duration and convexity results indicate that global bonds prices are more sensitive to 

interest rate movements relative to domestic bonds. It must be noted that most global 

bonds in the banks’ portfolios were available for sale (see Table 3). 
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Table 3. 

 

SENSITIVITY FACTORS OF INSTRUMENTS 

 Domestic Global 

Maturity Duration Convexity Maturity Duration Convexity 

6 mm 0.5 0.250 7 yr 4.889 28.994 

2 yr 1.8 3.401 9 yr 5.466 38.782 

3 yr 2.433 6.561 20 yr 8.116 101.420 

6 yr 3.908 19.006 30 yr 12.472 214.455 

9 yr 4.884 32.352    

15 yr 5.714 50.612    

20 yr 6.164 62.733    

25 yr 7.093 82.544    

 

4.4 Principal Component Analysis  

Domestic eigenvectors and eigenvalues of the covariance matrix indicate that the first 

three PCs explained 86.2 per cent of the variation in the term structure of the interest rate 

for domestic bonds. For global bonds, the first three principal components explained 95.3 

per cent of variations in the term structure of the interest rates. Therefore, the first three 

components were sufficient in explaining the variations in interest rates over time across 

all bond term structures.19 

 

 

 

 

 

 
                                                 
19 The number of relevant PCs (risk factors) is determined by the correlation structure of the data: if the 
data are all highly correlated, a few PCs are sufficient to explain most of the variation in the data. 
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Table 4. 

          PORTION OF VARIANCE EXPLAINED BY FIRST THREE PC 

 Domestic Global 

 PC1 PC2 PC3 PC1 PC2 PC3 

Eigenvalue 0.008 0.002 0.002 0.560 0.112 0.055 

Variability (%) 59.761 14.484 12.002 73.482 14.646 7.212 

Cumulative (%) 59.761 74.244 86.246 73.482 88.128 95.339 

 

 

For domestic instruments, 59.8 per cent of the movement in term structures can be 

attributed to parallel shifts. The tilt in the curve accounts for 14.5 per cent of the curve 

movement. The third component which induces the curvature of the yield curve accounts 

for 12.0 per cent of the curve movement.20  

 

The first component, with the exception of the 6-month bond, was positively correlated 

with rate changes. This indicates that the first PC represents parallel movement of the 

yield curve. The second PC, which is indicative of a tilt of the yield curve, was made 

evident as medium-term bonds showed a negative correlation with PC 2. The third PC 

exhibited correlation traits that signify a curvature in the yield curve (see Table 5 and 

Figure 3). 

 

 

 

 

 

 

 

 
                                                 
20 See appendix 3. 
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Table 5. 

PCA ON DAILY BASIS: FACTOR LOADINGS 

 Domestic Global 

Maturity PC1 PC2 PC3 Maturity PC1 PC2 PC3 

6 m -0.00005 0.00047 -0.00003     

2 yr 0.025 -0.001 -0.004     

3 yr 0.003 -0.002 -0.010     

6 yr 0.043 -0.002 -0.020 7 yr -0.034 0.007 0.056 

9 yr 0.042 -0.001 -0.016 9 yr 0.000 0.333 -0.022 

15 yr 0.041 0.002 0.018     

20 yr 0.042 0.002 0.021 20 yr 0.002 0.031 0.226 

25 yr 0.000 0.043 -0.004 30 yr 0.748 0.000 0.002 

 

Figure 3 
 
Diagrammatic representation of correlations between variables and factors for Domestic 
Bonds 
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The results for the global bonds indicated that PC1 accounted for 73.5 per cent of 

movements in term structure. This was followed by PC2 which accounted for 14.6 per 

cent of movements. PC3 had a 7.2 per cent influence on the term structure. The first 

component with the exception of the 7-year bond was positively correlated with rate 

changes. The second PC had a positive relationship with term structure changes for all 

global bonds. The third PC showed a positive relationship with term structure changes 

with the exception of the 9-year global bond. The correlation outturn for each PC did not 

give conclusive evidence in the nature of movement by the yield curve for each PC which 

may be due to insufficient amount of global bonds (see figure 4). 

 
Figure 4 

 
Diagrammatic representation of correlations between variables and factors for Global 
Bonds 
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4.5 Value at Risk Outturn 

The PC VaR outturn for the domestic portfolio indicated that the merchant banking sector 

had the highest risk for the banking sector. The 99th percentile parametric and non-

parametric VaR outturn for the domestic portfolio also indicated that the merchant 

banking sector had the highest risk for the banking sector. This was due mainly to 

merchant banks having a large proportion of their bonds as medium-term instruments. 
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Risk outturn for commercial banks was also high and was due to commercial banks 

holding a greater proportion of their domestic government bond investments in medium-

term instruments. This was particularly true for CBank 1, CBank 3 and CBank 7.  

 

Table 6. 

Parametric VaR Non Parametric VaR
Commercial Banks
CBank 1 -26.2% -10.2% -15.5%
CBank 2 0.0% 0.0% 0.0%
CBank 3 -31.4% -14.4% -25.7%
CBank 4 -2.6% -2.0% -2.4%
CBank 5 -4.8% -2.6% -5.3%
CBank 6 -0.1% -0.3% -0.4%
CBank 7 -7.7% -3.6% -7.0%
Merchant Banks
Mbank 1 -39.6% -26.9% -17.4%
Mbank 2 -20.3% -10.3% -13.2%
Mbank 3 0.0% 0.0% 0.0%
Building Societies
Bsoc 1 0.0% 0.0% 0.0%
Bsoc 2 -1.4% -0.5% -0.6%
Bsoc 3 -0.2% -0.4% -0.5%
Bsoc 4 -0.3% -0.3% -0.5%

Mean -9.6% -5.1% -6.3%

10-day Principal 
Component VaR

10-day VaR

Comparison of Different Risk Measures for Domestic GOJ Bonds: 10-day PC  VaR 
versus 10-day VaR

 
 

The global bond PC VaR and 99th percentile parametric and non-parametric VaR outturn 

for merchant banks’ foreign portfolio had the highest risk of exposure. The high risk 

associated with merchant banks’ global GOJ bonds was due mainly to their holding of 

long-term global bonds with maturities of over 20 years which accounted for 42.0 per 

cent of their portfolio value. Merchant bank 1 had a large share of its investment in bonds 

over 20 years. Note however, merchant bank 1 had a higher 99th percentile parametric 

and non-parametric VaR outturn relative to its PC VaR outturn. This is due mainly to the 

high volatility of the long term global bonds in its portfolio.  

 

The building society sector had the lowest PC VaR outturn relative to all other sectors for 

both domestic and global bonds. This was due mainly to building societies having more 

instruments that were being held to maturity. 
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Table 7. 

Parametric VaR Non Parametric VaR
Commercial Banks
CBank 1 0% 0% 0%
CBank 2 0% 0% 0%
CBank 3 0% 0% 0%
CBank 4 -7.0% -3.9% -5.2%
CBank 5 -7.6% -4.2% -5.6%
CBank 6 0% 0% 0%
CBank 7 -4.3% -2.4% -3.2%
Merchant Banks
Mbank 1 -21.7% -26.3% -59.7%
Mbank 2 0% 0% 0%
Mbank 3 -2.4% -1.3% -1.8%
Building Societies
Bsoc 1 0% 0% 0%
Bsoc 2 -3.8% -2.1% -2.8%
Bsoc 3 0% 0% 0%
Bsoc 4 0% 0% 0%

Mean -3.4% -2.9% -5.6%

10-day Principal 
Component VaR

10-day VaR

Comparison of Different risk Measures on Global GOJ Bonds:10-Day PC VaR versus 
10-day  VaR

 
 

The overall VaR outturn indicates that the exposure of local banks to risk is greater for 

their holdings of local bonds than for their holdings of global bonds due mainly to larger 

concentration of domestic GOJ bonds in their portfolios (see Table 1). It can also be 

deduced that the composition of the bonds portfolios for the merchant banking sectors, 

which were typically a bullet-profile, contributed to the high PC VaR results relative to 

the standard 10-VaR results (see Table 2).  

 

5. Discussion 

 

Duration results indicate that with the evolution of market conditions, the sensitivity of 

global bonds to changes in the yield curve was much higher relative to domestic bonds 

due to the larger impact of risk factors on global bonds. The convexity outturn for global 

bonds was also higher relative to domestic bonds highlighting the overall high sensitivity 

of global bond prices to changes in market conditions. 
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The characteristics of duration calculations and use of PCD modeling in VaR analysis 

have some major advantages. PCD modeling incorporates the sensitivity of bonds to 

movements within the market and combines this with the decomposing characteristics of 

PC which evaluates risk factors individually. PCs are uncorrelated by construction and by 

virtue simplify VaR analysis considerably. The advantage of this form of VaR analysis 

increases if interest rates are assumed to not follow a multivariate normal distribution 

resulting in more information in the tail end of the data. The normal distribution historical 

VaR generates lower risk probabilities when compared to PC VaR due to the fatter tail 

structure of the underlying yields (see Table 6 and Table 7). Note however, in cases 

where an institution had a long tenor instrument that had a volatile interest rate structure 

the PC VaR tended to be lower than parametric and non parametric VaR results. This was 

evident for merchant bank 1.   

 

The modeling of PC VaR is complimented by KRD whenever there is non-parallel 

interest rate movement. One example of this can be deduced from the negative and 

insignificant relationships between PC1 and term structure movements for the 6-month 

and 25-year bonds, respectively. These results reveal that expected inflation has a 

negative impact on short-term instruments and little or no impact on long-term 

instruments. Therefore, this type of analysis can be used to examine individual risk 

associated with domestic and international bond portfolios in the context of non-parallel 

movements in the yield curve arising from monetary policy21.  

 

6. Conclusion 

 

This paper developed a VaR methodology for measuring interest rate risk on the banking 

sector’s holding of both GOJ local and global bonds. The method is intuitive and explains 

risk associated with portfolios using three factors that affect yield curves. Because the 

factors are orthogonal to each other, correlation and covariance between the yields does 

not have to be explored, simplifying the calculation of VaR for the portfolios explored.  

                                                 
21 There is tendency for strong correlation between ‘surprises’ of monetary policy and the subsequent 
movement of the ‘slope’ component. This area of study is vital among central bankers and agents involved 
in and directly affected by central bank actions (Malava 2006). 
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PCD and the VaR that is generated from the model allows for the assessment of 

individual risk factors. This allows risk managers to isolate factors affecting term 

structures. 

 

Results indicate that the risk involved with holding GOJ domestic bonds is greater than 

holding global GOJ bonds. This is contingent on the banking system having a large share 

of its portfolio bond investments in domestic bonds. Also expected inflation has a large 

impact of the overall risk, particularly its impact on US dollar denominated portfolios. Of 

major significance, the PC VaR for the Jamaican banking system is higher relative to 

both parametric and historical VaR suggesting that the PC VaR holds more information 

as it relates to the risks impacting banking system portfolios. 

 

The paper recommends that the BOJ incorporates the use of PCA VaR modeling 

technique in monitoring risk associated with interest rate movements and its impact on 

banking system stability. The movements in expected inflation, market-perceived long 

term inflation as well as volatility of interest rates can be individually examined by 

regulators through the use of PCA VaR. This will allow for greater understanding by 

regulators of perceptions held by market participants as well as being able to assess the 

quantitative impact of changes in the yield curve on the portfolio risk exposures of the 

banking sector.  

 

In terms of future research, the employment of Monte Carlo techniques will allow for a 

more detailed assessment of movement in risk factors given different scenarios. This 

enhancement would also allow for stress-testing exercises to be conducted on the banking 

sector’s investments portfolio. The analysis will also be extended to capture all 

investment instruments held in the banking sector investment portfolio. 
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Appendix 1:  
 
 
Summary Statistics 
 
GOJ Domestic par Yield Curve-Descriptive Statistics (April 1 2008 to March 18 2009)

0.5 yr  2 yr 3 yr 6 yr 9 yr 15 yr 20 yr 25 yr
 Mean 0.0019 0.0023 0.0024 0.0024 0.0023 0.0007 0.0006 0.0023
 Median 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
 Maximum 0.0523 0.3561 0.3708 0.4226 0.4215 0.4258 0.4335 0.4000
 Minimum -0.0314 -0.2188 -0.1089 -0.4571 -0.4429 -0.4294 -0.4274 -0.2079
 Std. Dev. 0.0091 0.0346 0.0282 0.0498 0.0489 0.0399 0.0417 0.0449
 Skewness 1.5072 4.1194 9.0189 1.5190 1.8814 -0.1383 0.2058 3.5308
 Kurtosis 10.6597 57.1076 118.8034 67.7900 69.1866 106.1529 91.5266 36.8863

 Jarque-Bera 711.4539 31452.8500 144225.7000 44173.1800 46145.6000 111726.3000 82289.8900 12580.5500
Augmented Dickey-Fuller -8.228609 -16.61035 -17.91529 -14.92002 -21.80277 -14.87754 -15.8462 -22.85541
 Probability 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

 Sum 0.4762 0.5771 0.6021 0.6070 0.5726 0.1800 0.1531 0.5695
 Sum Sq. Dev. 0.0208 0.3011 0.1997 0.6232 0.5995 0.3987 0.4355 0.5066

 Observations 252.0000 252.0000 252.0000 252.0000 252.0000 252.0000 252.0000 252.0000

*Dickey-Fuller unit root test: 5% critical Value is equal to -2.87  
 
 
GOJ Global par Yield Curve-Descriptive Statistics (February 24 2006 to March 18 2009)

7 yr 9 yr 20 yr 30 yr

 Mean 0.000537 0.000527 0.0006 0.000595
 Median 0 0 0 0
 Maximum 0.159839 0.435113 0.211864 0.329919
 Minimum -0.190533 -0.192492 -0.202918 -0.324603
 Std. Dev. 0.017502 0.024475 0.019449 0.029207
 Skewness 0.569684 6.860503 0.912079 1.162565
 Kurtosis 45.39222 144.4259 75.55154 80.85242

 Jarque-Bera 59571.95 668779 174471.1 200949.7
Augmented Dickey-Fuller -4.544742 -5.844139 -21.60681 -4.304693
 Probability 0 0 0 0

 Sum 0.427145 0.419288 0.476863 0.472645
 Sum Sq. Dev. 0.24321 0.475622 0.300342 0.677316

 Observations 795 795 795 795

*Dickey-Fuller unit root test: 5% critical Value is equal to-2.86  
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Principal Component Descriptive Statistics

PC1 PC2 PC3
 Mean 0.024567 0.005104 -0.001705
 Median 0.033331 -0.000279 -0.004123
 Maximum 0.04255 0.042972 0.021245
 Minimum -5.30E-05 -0.00224 -0.019544
 Std. Dev. 0.02027 0.015394 0.014755
 Skewness -0.32898 2.213869 0.528331
 Kurtosis 1.256893 6.005444 2.014265

 Jarque-Bera 1.157111 9.545854 0.69607
Augmented Dickey-Fuller* -2.259007 2.279217 -3.243857
 Probability 0.560708 0.008456 0.706074

 Sum 0.196532 0.040829 -0.013637
 Sum Sq. Dev. 0.002876 0.001659 0.001524

 Observations 8 8 8

* Dickey-Fuller unit root test: 5% critical Value is equal to-3.5 not however observations less than 20 makes test inaccurate  
 
 
Appendix 2 
 
Properties of Eigenvalues and Eigenvectors  
 
Since Q is symmetric positive semi-definite, the eigenvalues njj ,...,2,1,0 =≥λ  and the 

eigenvectors  can be orthonormalized. This relationship is easily rewritten in matrix 

form: 

jU

 

Λ=UQV        [1] 
 
 

Where           

nλ

λ
λ

...00
............
00
0...0

2

1

=Λ

 

The matrix U consists of the orthonormal eigenvectors ; that is,  jU IUUUU TT ==

Therefore, equation 1 implies 

 
TUUQ Λ=        [2] 

 

Consider the linear transformation 
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ηξ Λ=U        [3] 

 

 

Where  

nλ

λ
λ

...00
............
00
0...0

2

1

=Λ  

 

If ),...,,( 21 nηηηη =  is a random vector with independent, normally-distributed 

components (and therefore, with the unit covariance matrix, I), then the vector,ξ , is a 

normal random vector that has the covariance matrix 

 

QUUUIUQ TT =Λ=ΛΛ= )()(ξ  

 

Equation 3 can be written as 

 

nnn UUU ληληληξ +++= ...22211    [4] 

 

 

The random variables njz jjj ,....,1, == ηλ  are called the principal components of the 

random variableξ , the vector njU j ,...,1, =  is referred to as the direction of the j-th 

principal component and equation 4 is the principal component expansion ofjz ξ . 

  

Equation 4 is essential in Principal Component Analysis. Based on equations, scenarios 

using the vector of independent standard normal random variables ),...,,( 21 nηηηη = were 

generated. If the last several eigenvalues nlk λλ ,...,+  are small, then the truncated vector  
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nnn UUU ληληληξ +++= ...ˆ
22211    [5] 

 

that uses only the vector ),...,,(ˆ 21 nηηηη = will be a good approximation of the random 
vectorξ .  
 
Appendix 3  
 
Screen Plots for PC: Shows cumulative variance explained by first three PC  
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Appendix 4 
 
Matlab Code for Computing PCA 
 
 
[M,N] = size(data); 

% subtract off the mean for each dimension 

mn = mean(data,2); 

data = data - repmat(mn,1,N); 

 

% calculate the covariance matrix 

covariance = 1 / (N-1) * data * data’; 

 

% find the eigenvectors and eigenvalues 

[PC, V] = eig(covariance); 
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% extract diagonal of matrix as vector 

V = diag(V); 

 

% sort the variances in decreasing order 

[junk, rindices] = sort(-1*V); 

V = V(rindices); 

PC = PC(:,rindices); 

 


